document.write( "Question 1089274:  p(a,b) is a variable point in the first quadrant on the curve y=e^-x. Q and R are the points where the tangent to the curve at p meets the x- and y - axes respectively. find the maximum area of the triangle OQR, where  O is the origin.
\n" );
document.write( "thank you
\n" );
document.write( " \n" );
document.write( "
| Algebra.Com's Answer #703632 by natolino_2017(77)      You can put this solution on YOUR website! y = exp(-x)\r \n" ); document.write( "\n" ); document.write( "b = exp(-a).\r \n" ); document.write( "\n" ); document.write( "dy/dx = -exp(-x), so dy/dx = -exp(-a) = -b (slope on the tangent line on (a,b))\r \n" ); document.write( "\n" ); document.write( "Let H: height of the triangle \n" ); document.write( " L: Base of the triangle.\r \n" ); document.write( "\n" ); document.write( "we need H in the terms of a and L in the terms of a.\r \n" ); document.write( "\n" ); document.write( "-b = (H-b)/(0-a). So H(a) = ab+b = exp(-a)(a+1).\r \n" ); document.write( "\n" ); document.write( "-b = (b-0)/(a-L). So L(a) = a+1\r \n" ); document.write( "\n" ); document.write( "A(a) = H(a)*(L(a))/2 (Area of the triangle: Base*height/2)\r \n" ); document.write( "\n" ); document.write( "A(a) = exp(-a)(a+1)^2/2 with a>0\r \n" ); document.write( "\n" ); document.write( "A'(a) = 0.5(-exp(-a)(a+1)^2 +2*exp(-a)(1+a)) = 0\r \n" ); document.write( "\n" ); document.write( " solving for a: a = 1.\r \n" ); document.write( "\n" ); document.write( "A''(a) = 0.5(-exp(-a)(1-a^2)-2aexp(-a)) = 0.5(exp(-a)(a^2-2a-1)\r \n" ); document.write( "\n" ); document.write( "A''(1) = -exp(-1) < 0, so the point is a max\r \n" ); document.write( "\n" ); document.write( "A(1) = 0.5exp(-1)(1+1)^2 = 2exp(-1) [unit^2] (0.736 [unit^2] aprox)\r \n" ); document.write( "\n" ); document.write( "@natolino_\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( " |