document.write( "Question 1089223: The graph of 2y^4 -x^2 +11 =0 is symmetric with respect which of the following?
\n" );
document.write( "1. The x axis
\n" );
document.write( "2. The y axis
\n" );
document.write( "3. The origin
\n" );
document.write( "A)only 1
\n" );
document.write( "B)only 2
\n" );
document.write( "C)only 3
\n" );
document.write( "D)1,2, and 3 \n" );
document.write( "
Algebra.Com's Answer #703563 by ikleyn(52858) You can put this solution on YOUR website! . \n" ); document.write( " \r\n" ); document.write( "The graph of 2y^4 -x^2 +11 =0 is symmetric with respect which of the following?\r\n" ); document.write( " 1. The x axis \r\n" ); document.write( " 2. The y axis \r\n" ); document.write( " 3. The origin \r\n" ); document.write( "A) only 1\r\n" ); document.write( "B) only 2\r\n" ); document.write( "C) only 3\r\n" ); document.write( "D) 1, 2, and 3\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " The correct answer is OPTION D).\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( "0. Let the point (x,y) belongs to the curve.\r\n" ); document.write( "\r\n" ); document.write( " It means that its coordinates satisfy the equation \r\n" ); document.write( "\r\n" ); document.write( " 2y^4 -x^2 +11 =0. (1)\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "1. Then the point (-x,y) also belongs to the curve.\r\n" ); document.write( "\r\n" ); document.write( " Indeed, then 2y^4 - (-x)^2 + 11 = 2y^4 - x^2 + 11 = 0 due to (1).\r\n" ); document.write( "\r\n" ); document.write( " It means that the symmetry (x,y) --> (-x,y) relative to the axis \"Y\" is in place.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "2. Also, then the point (x,-y) belongs to the curve.\r\n" ); document.write( "\r\n" ); document.write( " Indeed, then 2(-y)^4 - x^2 + 11 = 2y^4 - x^2 + 11 = 0 due to (1).\r\n" ); document.write( "\r\n" ); document.write( " It means that the symmetry (x,y) --> (x,-y) relative to the axis \"X\" is in place.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "3. Finally, then the point (-x,-y) belongs to the curve.\r\n" ); document.write( "\r\n" ); document.write( " Indeed, then 2(-y)^4 - (-x)^2 + 11 = 2y^4 - x^2 + 11 = 0 due to (1).\r\n" ); document.write( "\r\n" ); document.write( " It means that the symmetry (x,y) --> (-x,-y) relative to the origin is in place.\r\n" ); document.write( "\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Thus my statement is PROVED and the solution is COMPLETED.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " Proved. Solved. And completed. \r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The other's tutor solution is WRONG (his approach is WRONG and his answer is UNCOMPLETED).\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |