document.write( "Question 1089214: verify the identity. \r
\n" );
document.write( "\n" );
document.write( "cos (x + pi/2) = - sin x \n" );
document.write( "
Algebra.Com's Answer #703551 by Theo(13342) You can put this solution on YOUR website! this uses the basic trigonometric identity of:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "cos(a + b) = cos(a) * cos(b) - sin(a) * sin(b).\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "replace a with x and b with pi/2 and you get:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "cos(x + pi/2) = cos(x) * cos(pi/2) - sin(x) * sin(pi/2)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "cos(pi/2) = 0\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "sin(pi/2) = 1\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "you can use your calculator to confirm.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "equation bec0omes:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "cos(x + pi/2) = cos(x) * 0 - sin(x) * 1\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "simplify to get:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "cos(x + pi/2) = -sin(x)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "QED (that's your solution).\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |