document.write( "Question 1089163: convert the equation to standard for by completing the square on x. Then find the vertex, focus and directrix of the parabola. then graph\r
\n" ); document.write( "\n" ); document.write( "x^2+2x-8y-31=0
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #703511 by MathLover1(20850)\"\" \"About 
You can put this solution on YOUR website!
\"x%5E2%2B2x-8y-31=0\"\r
\n" ); document.write( "\n" ); document.write( "The \"vertex\" form of a parabola with its vertex at (\"h\",\"+k\") is:\r
\n" ); document.write( "\n" ); document.write( "regular: \"y+=+a%28x-h%29%5E2+%2B+k\"
\n" ); document.write( "sideways: \"x+=+a%28y+-k%29%5E2+%2B+h+\"\r
\n" ); document.write( "\n" ); document.write( "The conics form of the parabola equation (the one you'll find in advanced or older texts) is:\r
\n" ); document.write( "\n" ); document.write( " regular: \"4p%28y+-k%29+=+%28x-h%29%5E2\"
\n" ); document.write( " sideways: \"4p%28x+-h%29+=+%28y+-k%29%5E2\"\r
\n" ); document.write( "\n" ); document.write( "where the value of \"4p\" is actually the same as the value of \"1%2F4a\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28x%5E2%2B2x%2Bb%5E2%29-b%5E2-31=8y\"....since coefficients \"a=1\" and \"2ab=2\", we have \"2%2A1%2Ab=2\"->\"2b=2\"->\"b=1\"\r
\n" ); document.write( "\n" ); document.write( "\"8y=%28x%5E2%2B2x%2B1%5E2%29-1%5E2-31\"\r
\n" ); document.write( "\n" ); document.write( "\"8y=%28x%2B1%29%5E2-1-31\"\r
\n" ); document.write( "\n" ); document.write( "\"y=%281%2F8%29%28x%2B1%29%5E2-32%2F8\"\r
\n" ); document.write( "\n" ); document.write( "\"y=%281%2F8%29%28x%2B1%29%5E2-4\"=> \"h=-1\" and \"k=-4\", and \r
\n" ); document.write( "\n" ); document.write( "the vertex is at (\"-1\",\"-4\")\r
\n" ); document.write( "\n" ); document.write( "The focus is \"p\" units from the vertex:
\n" ); document.write( "\"p+=1%2F4a=1%2F%284%281%2F8%29%29=2\", \r
\n" ); document.write( "\n" ); document.write( "so \"p=2\"\r
\n" ); document.write( "\n" ); document.write( "then,
\n" ); document.write( "the focus is \"2\" unit above the vertex, at (\"-1\", \"-2\"),
\n" ); document.write( "and the directrix is the horizontal line\"+y+=+-6\", p or \"two\"\"+units\" below the vertex\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );