document.write( "Question 1088848: An unknown radioactive element decays into non-radioactive substances. In 840 days the radioactivity of a sample decreases by 48 percent.\r
\n" );
document.write( "\n" );
document.write( "(a) What is the half-life of the element?\r
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( "(b) How long will it take for a sample of 100 mg to decay to 69 mg? \n" );
document.write( "
Algebra.Com's Answer #703164 by rothauserc(4718)![]() ![]() You can put this solution on YOUR website! The half-life formula is \n" ); document.write( ": \n" ); document.write( "N(t) = N(0) * (1/2)^(t/t(1/2)) \n" ); document.write( ": \n" ); document.write( "solve for t(1/2) \n" ); document.write( ": \n" ); document.write( "1) t(1/2) = t / (log(1/2)(N(t)/N(0)) \n" ); document.write( ": \n" ); document.write( "let N(0) = 1.0 and N(t) = (1.0 - 0.48) = 0.52 and t = 840 \n" ); document.write( ": \n" ); document.write( "t(1/2) = 840 / (log(1/2) (0.52/1.0)) = 893.6 approx 894 days \n" ); document.write( ": \n" ); document.write( "************************ \n" ); document.write( "a) half-life is 894 days \n" ); document.write( "************************ \n" ); document.write( ": \n" ); document.write( "solve equation 1) for t \n" ); document.write( ": \n" ); document.write( "t = t(1/2) * (log(1/2)(N(t)/N(0)) \n" ); document.write( ": \n" ); document.write( "t = 894 * log(1/2) (69/100) = 894 * 0.535 = 478.29 approx 478 \n" ); document.write( ": \n" ); document.write( "****************************************************************** \n" ); document.write( "b) it will take 478 days for sample to decay from 100 mg to 69 mg \n" ); document.write( "****************************************************************** \n" ); document.write( ": \n" ); document.write( " \n" ); document.write( " |