document.write( "Question 1088848: An unknown radioactive element decays into non-radioactive substances. In 840 days the radioactivity of a sample decreases by 48 percent.\r
\n" ); document.write( "\n" ); document.write( "(a) What is the half-life of the element?\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "(b) How long will it take for a sample of 100 mg to decay to 69 mg?
\n" ); document.write( "

Algebra.Com's Answer #703164 by rothauserc(4718)\"\" \"About 
You can put this solution on YOUR website!
The half-life formula is
\n" ); document.write( ":
\n" ); document.write( "N(t) = N(0) * (1/2)^(t/t(1/2))
\n" ); document.write( ":
\n" ); document.write( "solve for t(1/2)
\n" ); document.write( ":
\n" ); document.write( "1) t(1/2) = t / (log(1/2)(N(t)/N(0))
\n" ); document.write( ":
\n" ); document.write( "let N(0) = 1.0 and N(t) = (1.0 - 0.48) = 0.52 and t = 840
\n" ); document.write( ":
\n" ); document.write( "t(1/2) = 840 / (log(1/2) (0.52/1.0)) = 893.6 approx 894 days
\n" ); document.write( ":
\n" ); document.write( "************************
\n" ); document.write( "a) half-life is 894 days
\n" ); document.write( "************************
\n" ); document.write( ":
\n" ); document.write( "solve equation 1) for t
\n" ); document.write( ":
\n" ); document.write( "t = t(1/2) * (log(1/2)(N(t)/N(0))
\n" ); document.write( ":
\n" ); document.write( "t = 894 * log(1/2) (69/100) = 894 * 0.535 = 478.29 approx 478
\n" ); document.write( ":
\n" ); document.write( "******************************************************************
\n" ); document.write( "b) it will take 478 days for sample to decay from 100 mg to 69 mg
\n" ); document.write( "******************************************************************
\n" ); document.write( ":
\n" ); document.write( "
\n" ); document.write( "
\n" );