document.write( "Question 96495: I have a problem that asks me to find the one real zero and two complex zeros. I just do not know where to even begin and our book has no examples of it. Here is the problem: 2x^3+17x^2+120x+225 Thank you so much! \n" ); document.write( "
Algebra.Com's Answer #70264 by jim_thompson5910(35256) ![]() You can put this solution on YOUR website! I'm not sure how your teacher wants you to find the first root, but we'll use a graphing calculator to find the first root.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Using the root find feature, we find one root at \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Let's simplify this expression using synthetic division\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Start with the given expression \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "First lets find our test zero:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "so our test zero is -5/2\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Now set up the synthetic division table by placing the test zero in the upper left corner and placing the coefficients of the numerator to the right of the test zero.
\n" ); document.write( "\n" ); document.write( "Start by bringing down the leading coefficient (it is the coefficient with the highest exponent which is 2)\r \n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " Multiply -5/2 by 2 and place the product (which is -5) right underneath the second coefficient (which is 17)\r \n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " Add -5 and 17 to get 12. Place the sum right underneath -5.\r \n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " Multiply -5/2 by 12 and place the product (which is -30) right underneath the third coefficient (which is 120)\r \n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " Add -30 and 120 to get 90. Place the sum right underneath -30.\r \n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " Multiply -5/2 by 90 and place the product (which is -225) right underneath the fourth coefficient (which is 225)\r \n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " Add -225 and 225 to get 0. Place the sum right underneath -225.\r \n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Since the last column adds to zero, we have a remainder of zero. This means \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Now lets look at the bottom row of coefficients:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The first 3 coefficients (2,12,90) form the quotient\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Notice in the denominator \n" ); document.write( "\n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \r \n" ); document.write( "\n" ); document.write( "So \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "You can use this online polynomial division calculator to check your work\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Basically \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Now lets break \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Let's use the quadratic formula to solve for x:\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Starting with the general quadratic\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "the general solution using the quadratic equation is:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "So lets solve \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "After simplifying, the quadratic has roots of\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "So that means the polynomial has roots of \r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " |