document.write( "Question 1088107: 2. Consider the Linear programming formulation below:
\n" ); document.write( "Minimize cost = $1X1 + $2X2\r
\n" ); document.write( "\n" ); document.write( " Subject to:
\n" ); document.write( " X1 + 3X2 ≥ 90\r
\n" ); document.write( "\n" ); document.write( " 8X1 +2X2 ≥ 160\r
\n" ); document.write( "\n" ); document.write( " 3X1 + 2X2 ≥ 120\r
\n" ); document.write( "\n" ); document.write( " X2 ≤ 70
\n" ); document.write( "X1 X2 ≥ 0
\n" ); document.write( "d. Solve the above linear programming model, using corner point graphical approach. Indicate your corner points coordinates on the graph.
\n" ); document.write( "e. Shade your feasible region and determine the best combination of X1 and X2 that yields the highest profit.
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #702388 by Fombitz(32388)\"\" \"About 
You can put this solution on YOUR website!
Graph the constraints to identify the feasible region, I will use software that uses x,y instead of x1,x2.
\n" ); document.write( ".
\n" ); document.write( ".
\n" ); document.write( ".
\n" ); document.write( ".
\n" ); document.write( ".
\n" ); document.write( ".
\n" ); document.write( ".
\n" ); document.write( "The feasible region is unbounded however since you're looking for minimum value of an addition of two variables, larger positive numbers will not give you smaller values.
\n" ); document.write( "Check the value at the vewrtices:
\n" ); document.write( "(0,90)
\n" ); document.write( "(0,80)
\n" ); document.write( "(4,48)
\n" ); document.write( "(40,0)
\n" ); document.write( "I'll do one you do the other three.
\n" ); document.write( "One of the values will provide a minimum.
\n" ); document.write( "(0,90):\"C=0%2B90=90\"
\n" ); document.write( "Do the same for the others.\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );