document.write( "Question 1087785: How much must be invested at the end of each year, for 4 years, to achieve an amount of $10000, if interest is earned at a rate of 6.25% per year, compounded annually? \n" ); document.write( "
Algebra.Com's Answer #702079 by jim_thompson5910(35256)![]() ![]() ![]() You can put this solution on YOUR website! \n" ); document.write( "Let P = amount invested at the end of each year \n" ); document.write( "------------------------------- \n" ); document.write( "Year 1: \n" ); document.write( "P dollars is invested at an interest rate of 6.25%, so r = 0.0625 in decimal form. \n" ); document.write( "The compounding frequency is n = 1 \n" ); document.write( "The money is compounded for t = 3 years\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "So, \n" ); document.write( "A = P*(1+r/n)^(n*t) \n" ); document.write( "A = P*(1+0.0625/1)^(1*3) \n" ); document.write( "A = P*1.199462890625 \n" ); document.write( "A = 1.199462890625*P\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Let's call this A1, so A1 = 1.199462890625*P \n" ); document.write( "------------------------------- \n" ); document.write( "Year 2: \n" ); document.write( "P dollars is invested at an interest rate of 6.25%, so r = 0.0625 in decimal form. \n" ); document.write( "The compounding frequency is n = 1 \n" ); document.write( "The money is compounded for t = 2 years\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "So, \n" ); document.write( "A = P*(1+r/n)^(n*t) \n" ); document.write( "A = P*(1+0.0625/1)^(1*2) \n" ); document.write( "A = P*1.12890625 \n" ); document.write( "A = 1.12890625*P\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Let's call this A2, so A2 = 1.12890625*P \n" ); document.write( "------------------------------- \n" ); document.write( "Year 3: \n" ); document.write( "P dollars is invested at an interest rate of 6.25%, so r = 0.0625 in decimal form. \n" ); document.write( "The compounding frequency is n = 1 \n" ); document.write( "The money is compounded for t = 1 years\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "So, \n" ); document.write( "A = P*(1+r/n)^(n*t) \n" ); document.write( "A = P*(1+0.0625/1)^(1*1) \n" ); document.write( "A = P*1.0625 \n" ); document.write( "A = 1.0625*P\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Let's call this A3, so A3 = 1.0625*P \n" ); document.write( "------------------------------- \n" ); document.write( "Year 4: \n" ); document.write( "P dollars is invested at an interest rate of 6.25%, so r = 0.0625 in decimal form. \n" ); document.write( "The compounding frequency is n = 1 \n" ); document.write( "The money is compounded for t = 0 years\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "So, \n" ); document.write( "A = P*(1+r/n)^(n*t) \n" ); document.write( "A = P*(1+0.0625/1)^(1*0) \n" ); document.write( "A = P*1 \n" ); document.write( "A = 1*P\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Let's call this A4, so A4 = 1*P \n" ); document.write( "-------------------------------\r \n" ); document.write( "\n" ); document.write( "In summary, we have the following\r \n" ); document.write( "\n" ); document.write( "A1 = 1.199462890625*P \n" ); document.write( "A2 = 1.12890625*P \n" ); document.write( "A3 = 1.0625*P \n" ); document.write( "A4 = 1*P\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Add up the values A1 through A4 to get \n" ); document.write( "A1 + A2 + A3 + A4 = 1.199462890625*P + 1.12890625*P + 1.0625*P + 1*P \n" ); document.write( "A1 + A2 + A3 + A4 = (1.199462890625 + 1.12890625 + 1.0625 + 1)*P \n" ); document.write( "A1 + A2 + A3 + A4 = 4.390869140625*P \n" ); document.write( "------------------------------- \n" ); document.write( "We want the sum of the four results (A1 through A4) to add up to $10,000 as stated in the problem. \n" ); document.write( "Set 4.390869140625*P equal to 10000 and solve for P \n" ); document.write( "4.390869140625*P = 10000 \n" ); document.write( "4.390869140625*P/4.390869140625 = 10000/4.390869140625 \n" ); document.write( "P = 2277.45343341673 \n" ); document.write( "P = 2277.45\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Rounded to the nearest penny, the amount you need to invest at the end of each year is $2,277.45\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "-------------------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "A shortcut is to use the future value of an annuity formula \n" ); document.write( "Plug in FV = 10000, i = 0.0625 and n = 4. \n" ); document.write( "Solve for P\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "FV = P * [(1+i)^n - 1 ]/i \n" ); document.write( "10000 = P * [(1+0.0625)^4 - 1 ]/0.0625 \n" ); document.write( "10000 = P * [(1.0625)^4 - 1 ]/0.0625 \n" ); document.write( "10000 = P * [1.27442932128906 - 1 ]/0.0625 \n" ); document.write( "10000 = P*(0.274429321289063)/0.0625 \n" ); document.write( "10000 = P*4.390869140625 \n" ); document.write( "10000 = 4.390869140625*P \n" ); document.write( "4.390869140625*P = 10000 \n" ); document.write( "4.390869140625*P/4.390869140625 = 10000/4.390869140625 \n" ); document.write( "P = 2277.45343341674 \n" ); document.write( "P = 2277.45\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Getting us the same answer as before. \n" ); document.write( " \n" ); document.write( " |