document.write( "Question 1087375: Show that the circles x^2 + y^2 - 16x - 20y + 115 = 0 and x^2 + y^2 + 8x - 10y + 5 = 0 are tangent and fine the point of tangency \n" ); document.write( "
Algebra.Com's Answer #701650 by Fombitz(32388)\"\" \"About 
You can put this solution on YOUR website!
\"x%5E2-16x%2By%5E2+-+20y+%2B+115+=+0\"
\n" ); document.write( "\"%28x-8%29%5E2%2B%28y-10%29%5E2=+-115%2B64%2B100+\"
\n" ); document.write( "\"%28x-8%29%5E2%2B%28y-10%29%5E2=49\"
\n" ); document.write( "\"%28x-8%29%5E2%2B%28y-10%29%5E2=7%5E2\"
\n" ); document.write( "and
\n" ); document.write( "\"x%5E2%2B8x+%2B+y%5E2+-+10y+%2B+5+=+0\"
\n" ); document.write( "\"%28x%2B4%29%5E2%2B%28y-5%29%5E2=-5%2B16%2B25\"
\n" ); document.write( "\"%28x%2B4%29%5E2%2B%28y-5%29%5E2=36\"
\n" ); document.write( "\"%28x%2B4%29%5E2%2B%28y-5%29%5E2=6%5E2\"
\n" ); document.write( "So the point of tangency lies on the line that connects the centers of the circles (8,10) and (-4,5).
\n" ); document.write( "If the distance from the centers is x then the point lies \"%286%2F%286%2B7%29%29\" of the distance from (-4,5) to (8,10).
\n" ); document.write( "So the x distance from the centers is,
\n" ); document.write( "\"dx=8-%28-4%29=12\"
\n" ); document.write( "So then starting from -4,
\n" ); document.write( "\"x%5Bt%5D=-4%2B12%286%2F13%29=-4%2B72%2F13=-52%2F13%2B72%2F13=20%2F13\"
\n" ); document.write( "And the y distance is,
\n" ); document.write( "\"dy=10-5=5\"
\n" ); document.write( "And starting from 5,
\n" ); document.write( "\"y%5Bt%5D=5%2B5%286%2F13%29=65%2F13%2B30%2F13=95%2F13\"
\n" ); document.write( ".
\n" ); document.write( ".
\n" ); document.write( ".
\n" ); document.write( "(\"20%2F13\",\"95%2F13\")
\n" ); document.write( ".
\n" ); document.write( "..
\n" ); document.write( ".
\n" ); document.write( ".
\n" ); document.write( "
\n" );