document.write( "Question 1086877: 65% of men consider themselves football fans,you randomly select 8 men and ask each if he is a football fan.Find the probability that
\n" );
document.write( "1.at least 5 are football fans
\n" );
document.write( "2.less than five are football fans.
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #701119 by jim_thompson5910(35256) ![]() You can put this solution on YOUR website! Let's compute the binomial probabilities for k = 5 through k = 8 (where k is an integer) \n" ); document.write( "For each case, the probability of success is p = 0.65 and the sample size is n = 8\r \n" ); document.write( "\n" ); document.write( "-------------------------------------------------------------------- \n" ); document.write( "For k = 5, we have this combination \n" ); document.write( "n C k = (n!)/(k!*(n-k)!) \n" ); document.write( "8 C 5 = (8!)/(5!*(8-5)!) \n" ); document.write( "8 C 5 = (8!)/(5!*3!) \n" ); document.write( "8 C 5 = (8*7*6*5!)/(5!*3!) \n" ); document.write( "8 C 5 = (8*7*6)/(3!) \n" ); document.write( "8 C 5 = (8*7*6)/(3*2*1) \n" ); document.write( "8 C 5 = 336/6 \n" ); document.write( "8 C 5 = 56\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Leading to this binomial probability \n" ); document.write( "P(X = k) = (n C k)*(p)^(k)*(1-p)^(n-k) \n" ); document.write( "P(X = 5) = (8 C 5)*(0.65)^(5)*(1-0.65)^(8-5) \n" ); document.write( "P(X = 5) = (8 C 5)*(0.65)^(5)*(0.35)^(3) \n" ); document.write( "P(X = 5) = (56)*(0.65)^(5)*(0.35)^3 \n" ); document.write( "P(X = 5) = (56)*(0.1160290625)*(0.042875) \n" ); document.write( "P(X = 5) = 0.2785857790625\r \n" ); document.write( "\n" ); document.write( "-------------------------------------------------------------------- \n" ); document.write( "For k = 6, we have this combination \n" ); document.write( "n C k = (n!)/(k!*(n-k)!) \n" ); document.write( "8 C 6 = (8!)/(6!*(8-6)!) \n" ); document.write( "8 C 6 = (8!)/(6!*2!) \n" ); document.write( "8 C 6 = (8*7*6!)/(6!*2!) \n" ); document.write( "8 C 6 = (8*7)/(2!) \n" ); document.write( "8 C 6 = (8*7)/(2*1) \n" ); document.write( "8 C 6 = 56/2 \n" ); document.write( "8 C 6 = 28\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Leading to this binomial probability \n" ); document.write( "P(X = k) = (n C k)*(p)^(k)*(1-p)^(n-k) \n" ); document.write( "P(X = 6) = (8 C 6)*(0.65)^(6)*(1-0.65)^(8-6) \n" ); document.write( "P(X = 6) = (8 C 6)*(0.65)^(6)*(0.35)^(2) \n" ); document.write( "P(X = 6) = (28)*(0.65)^(6)*(0.35)^2 \n" ); document.write( "P(X = 6) = (28)*(0.075418890625)*(0.1225) \n" ); document.write( "P(X = 6) = 0.25868679484375\r \n" ); document.write( "\n" ); document.write( "-------------------------------------------------------------------- \n" ); document.write( "For k = 7, we have this combination \n" ); document.write( "n C k = (n!)/(k!*(n-k)!) \n" ); document.write( "8 C 7 = (8!)/(7!*(8-7)!) \n" ); document.write( "8 C 7 = (8!)/(7!*1!) \n" ); document.write( "8 C 7 = (8*7!)/(7!*1!) \n" ); document.write( "8 C 7 = (8)/(1!) \n" ); document.write( "8 C 7 = (8)/(1) \n" ); document.write( "8 C 7 = 8/1 \n" ); document.write( "8 C 7 = 8\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Leading to this binomial probability \n" ); document.write( "P(X = k) = (n C k)*(p)^(k)*(1-p)^(n-k) \n" ); document.write( "P(X = 7) = (8 C 7)*(0.65)^(7)*(1-0.65)^(8-7) \n" ); document.write( "P(X = 7) = (8 C 7)*(0.65)^(7)*(0.35)^(1) \n" ); document.write( "P(X = 7) = (8)*(0.65)^(7)*(0.35)^1 \n" ); document.write( "P(X = 7) = (8)*(0.04902227890625)*(0.35) \n" ); document.write( "P(X = 7) = 0.1372623809375\r \n" ); document.write( "\n" ); document.write( "-------------------------------------------------------------------- \n" ); document.write( "For k = 8, we have this combination \n" ); document.write( "n C k = (n!)/(k!*(n-k)!) \n" ); document.write( "8 C 8 = (8!)/(8!*(8-8)!) \n" ); document.write( "8 C 8 = (8!)/(8!*0!) \n" ); document.write( "8 C 8 = (1)/(1*0!) \n" ); document.write( "8 C 8 = (1)/(1*1) \n" ); document.write( "8 C 8 = (1)/(1) \n" ); document.write( "8 C 8 = 1\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Leading to this binomial probability \n" ); document.write( "P(X = k) = (n C k)*(p)^(k)*(1-p)^(n-k) \n" ); document.write( "P(X = 8) = (8 C 8)*(0.65)^(8)*(1-0.65)^(8-8) \n" ); document.write( "P(X = 8) = (8 C 8)*(0.65)^(8)*(0.35)^(0) \n" ); document.write( "P(X = 8) = (1)*(0.65)^(8)*(0.35)^0 \n" ); document.write( "P(X = 8) = (1)*(0.0318644812890625)*(1) \n" ); document.write( "P(X = 8) = 0.0318644812890625\r \n" ); document.write( "\n" ); document.write( "--------------------------------------------------------------------\r \n" ); document.write( "\n" ); document.write( "We do not need to compute the probabilities for k = 0 to k = 4, but for the sake of completeness the probabilities are shown in the table below\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Full Binomial Distribution Table \n" ); document.write( "
\n" ); document.write( "--------------------------------------------------------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "We'll use that table to answer problem 1. Add up the probabilities for k = 5, k = 6, k = 7, k = 8 to get \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "Answer for problem one: 0.70639943613281 \n" ); document.write( "Round that however you need to\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The events \"less than 5\" and \"at least 5\" are complementary. One or the other must happen. Therefore their probabilities add to 1 \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Use the result from problem 1 to get \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "Answer for problem two: 0.29360056386719 \n" ); document.write( "Round that however you need to \n" ); document.write( " |