document.write( "Question 1086747: Perform the indicated operations using trigonometric form. Please leave your answer in trigonometric form. (1+i)^4 \n" ); document.write( "
Algebra.Com's Answer #701015 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
z = 1+i = 1+1*i is in the form a+b*i where a = 1 and b = 1\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "r = sqrt(a^2+b^2)
\n" ); document.write( "r = sqrt(1^2+1^2)
\n" ); document.write( "r=sqrt(2)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "theta = arctan(b/a)
\n" ); document.write( "theta = arctan(1/1)
\n" ); document.write( "theta = arctan(1)
\n" ); document.write( "theta = pi/4 radians (45 degrees)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "If z = 1+i, then z = sqrt(2)*(cos(pi/4) + i*sin(pi/4)) is the trig form of the given complex number.
\n" ); document.write( "Recall that z = r*(cos(theta)+i*sin(theta)) is the general trig form. \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "De Moivre's Theorem is the idea of raising a trig complex number to some integer power n\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "z = r*(cos(theta)+i*sin(theta))\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "z^n = [r*(cos(theta)+i*sin(theta))]^n\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "z^n = r^n*(cos(n*theta)+i*sin(n*theta))\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Using De Moivre's Theorem, we can say\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "z^n = r^n*(cos(n*theta)+i*sin(n*theta))\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "z^4 = r^4*(cos(4*theta)+i*sin(4*theta))\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "z^4 = (sqrt(2))^4*(cos(4*pi/4)+i*sin(4*pi/4))\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "z^4 = 4*(cos(pi)+i*sin(pi))\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "z^4 = 4*(-1+i*0)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "z^4 = 4*(-1+0)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "z^4 = 4*(-1)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "z^4 = -4\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Earlier we defined z = 1+i and we just found out z^4 = -4\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So in conclusion, (1+i)^4 = -4\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "If you wish to leave the answer in trig form, then writing it as 4*(cos(pi)+i*sin(pi)) should be fine (though it won't be fully simplified)
\n" ); document.write( "
\n" );