document.write( "Question 1086674: If x+y+z=7 and xy+yz+zx=11,then least and largest value of z are ? \n" ); document.write( "
Algebra.Com's Answer #700901 by Edwin McCravy(20056)![]() ![]() You can put this solution on YOUR website! If x+y+z=7 and xy+yz+zx=11,then least and largest value of z are ? \n" ); document.write( " \r\n" ); document.write( "Since z=7-(x+y)\r\n" ); document.write( "\r\n" ); document.write( "z will be smallest when x+y is large as possible, and\r\n" ); document.write( "z will be largest when x+y is small as possible.\r\n" ); document.write( "\r\n" ); document.write( "So let x+y = s \r\n" ); document.write( "then y = s-x\r\n" ); document.write( "and z = 7-s\r\n" ); document.write( "\r\n" ); document.write( "z will be smallest when s is large as possible, and\r\n" ); document.write( "z will be largest when s is small as possible.\r\n" ); document.write( "\r\n" ); document.write( "We substitute in \r\n" ); document.write( "\r\n" ); document.write( "xy+yz+zx = 11\r\n" ); document.write( "\r\n" ); document.write( "x(s-x)+(s-x)(7-s)+(7-s)x = 11\r\n" ); document.write( "\r\n" ); document.write( "sx-x²+7s-s²-7x+sx+7x-sx = 11\r\n" ); document.write( "-x²+sx+7s-s²= 11\r\n" ); document.write( "-x²+sx+7s-s²-11 = 0\r\n" ); document.write( "-x²+sx-s²+7s-11 = 0\r\n" ); document.write( " x²-sx+s²-7s+11 = 0\r\n" ); document.write( "\r\n" ); document.write( "The discriminant \r\n" ); document.write( "\r\n" ); document.write( "\n" ); document.write( " |