document.write( "Question 1086544: 1.) What rate (%) compounded quarterly is equivalent to 6% compounded semi-annually?
\n" );
document.write( "a. 5.93
\n" );
document.write( "b. 5.99
\n" );
document.write( "c. 5.96
\n" );
document.write( "d. 5.9\r
\n" );
document.write( "\n" );
document.write( "2.) Which of the following has the least effective annual interest rate?
\n" );
document.write( "a. 12% compounded quarterly
\n" );
document.write( "b. 11.5 compounded monthly
\n" );
document.write( "c. 11.7% compounded semi-annually
\n" );
document.write( "d. 12.2% compounded annually\r
\n" );
document.write( "\n" );
document.write( "3.) A bank offers 1.2% effective monthly interest. What is the effective annual rate with monthly
\n" );
document.write( "compounding?
\n" );
document.write( "a. 15.4%
\n" );
document.write( "b. 8.9%
\n" );
document.write( "c. 14.4%
\n" );
document.write( "d. 7.9% \n" );
document.write( "
Algebra.Com's Answer #700777 by jim_thompson5910(35256)![]() ![]() ![]() You can put this solution on YOUR website! Problem 1\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "EAR = effective annual rate \n" ); document.write( "EAR = (1+r/n)^n - 1 \n" ); document.write( "----------------- \n" ); document.write( "We have some unknown interest rate. Call it x. This value is compounded quarterly to get some EAR, so,\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "EAR = (1+r/n)^n - 1 \n" ); document.write( "EAR = (1+x/4)^4 - 1 \n" ); document.write( "----------------- \n" ); document.write( "We have another rate of 6% = 0.06 compounded semi-annually to get the same EAR value\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "EAR = (1+r/n)^n - 1 \n" ); document.write( "EAR = (1+0.06/2)^2 - 1 \n" ); document.write( "EAR = (1+0.03)^2 - 1 \n" ); document.write( "EAR = (1.03)^2 - 1 \n" ); document.write( "EAR = 1.0609 - 1 \n" ); document.write( "EAR = 0.0609 \n" ); document.write( "----------------- \n" ); document.write( "Set the two EAR expressions equal to one another. Solve for x\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "(1+x/4)^4 - 1 = 0.0609 \n" ); document.write( "(1+x/4)^4 - 1+1 = 0.0609+1 \n" ); document.write( "(1+x/4)^4 = 1.0609 \n" ); document.write( "[(1+x/4)^4]^(1/4) = (1.0609)^(1/4) \n" ); document.write( "1+x/4 = 1.01488915650922 \n" ); document.write( "1+x/4 - 1 = 1.01488915650922 - 1 \n" ); document.write( "x/4 = 0.01488915650922 \n" ); document.write( "4*(x/4) = 4*0.01488915650922 \n" ); document.write( "x = 0.05955662603689\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "which rounds to 0.0596 and converts to 5.96%\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "So if you have 5.96% compounded quarterly, then it's roughly equivalent to 6% compounded semi-annually.\r \n" ); document.write( "\n" ); document.write( "================================================================ \n" ); document.write( "Problem 2\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "For each of these, we'll use the same formula as in problem 1 \n" ); document.write( "EAR = (1+r/n)^n - 1 \n" ); document.write( "----------------- \n" ); document.write( "A) \n" ); document.write( "r = 0.12 \n" ); document.write( "n = 4 \n" ); document.write( "EAR = (1+r/n)^n - 1 \n" ); document.write( "EAR = (1+0.12/4)^4 - 1 \n" ); document.write( "EAR = 0.12550881 \n" ); document.write( "EAR = 0.1255 \n" ); document.write( "EAR = 12.55% \n" ); document.write( "----------------- \n" ); document.write( "B) \n" ); document.write( "r = 0.115 \n" ); document.write( "n = 12 \n" ); document.write( "EAR = (1+r/n)^n - 1 \n" ); document.write( "EAR = (1+0.115/12)^12 - 1 \n" ); document.write( "EAR = 0.12125932813801 \n" ); document.write( "EAR = 0.1213 \n" ); document.write( "EAR = 12.13% \n" ); document.write( "----------------- \n" ); document.write( "C) \n" ); document.write( "r = 0.117 \n" ); document.write( "n = 2 \n" ); document.write( "EAR = (1+r/n)^n - 1 \n" ); document.write( "EAR = (1+0.117/2)^2 - 1 \n" ); document.write( "EAR = 0.12042225 \n" ); document.write( "EAR = 0.1204 \n" ); document.write( "EAR = 12.04% \n" ); document.write( "----------------- \n" ); document.write( "D) \n" ); document.write( "r = 0.122 \n" ); document.write( "n = 1 \n" ); document.write( "EAR = (1+r/n)^n - 1 \n" ); document.write( "EAR = (1+0.122/1)^1 - 1 \n" ); document.write( "EAR = 0.122 \n" ); document.write( "EAR = 12.2% \n" ); document.write( "Note: because of annual compounding, the EAR is the same as the nominal APR. \n" ); document.write( "----------------- \n" ); document.write( "The smallest EAR value is 12.04%, which is from choice C. That's why choice C is the answer. \n" ); document.write( "================================================================ \n" ); document.write( "Problem 3\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "EMR = effective monthly rate \n" ); document.write( "EMR = EAR/12 \n" ); document.write( "12*EMR = EAR \n" ); document.write( "EAR = 12*EMR\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The EMR is given to be 1.2% = 0.012, so the EAR is, \n" ); document.write( "EAR = 12*EMR \n" ); document.write( "EAR = 12*(0.012) \n" ); document.write( "EAR = 0.144 \n" ); document.write( "EAR = 14.4% \n" ); document.write( " |