document.write( "Question 1086544: 1.) What rate (%) compounded quarterly is equivalent to 6% compounded semi-annually?
\n" ); document.write( "a. 5.93
\n" ); document.write( "b. 5.99
\n" ); document.write( "c. 5.96
\n" ); document.write( "d. 5.9\r
\n" ); document.write( "\n" ); document.write( "2.) Which of the following has the least effective annual interest rate?
\n" ); document.write( "a. 12% compounded quarterly
\n" ); document.write( "b. 11.5 compounded monthly
\n" ); document.write( "c. 11.7% compounded semi-annually
\n" ); document.write( "d. 12.2% compounded annually\r
\n" ); document.write( "\n" ); document.write( "3.) A bank offers 1.2% effective monthly interest. What is the effective annual rate with monthly
\n" ); document.write( "compounding?
\n" ); document.write( "a. 15.4%
\n" ); document.write( "b. 8.9%
\n" ); document.write( "c. 14.4%
\n" ); document.write( "d. 7.9%
\n" ); document.write( "

Algebra.Com's Answer #700777 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
Problem 1\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "EAR = effective annual rate
\n" ); document.write( "EAR = (1+r/n)^n - 1
\n" ); document.write( "-----------------
\n" ); document.write( "We have some unknown interest rate. Call it x. This value is compounded quarterly to get some EAR, so,\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "EAR = (1+r/n)^n - 1
\n" ); document.write( "EAR = (1+x/4)^4 - 1
\n" ); document.write( "-----------------
\n" ); document.write( "We have another rate of 6% = 0.06 compounded semi-annually to get the same EAR value\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "EAR = (1+r/n)^n - 1
\n" ); document.write( "EAR = (1+0.06/2)^2 - 1
\n" ); document.write( "EAR = (1+0.03)^2 - 1
\n" ); document.write( "EAR = (1.03)^2 - 1
\n" ); document.write( "EAR = 1.0609 - 1
\n" ); document.write( "EAR = 0.0609
\n" ); document.write( "-----------------
\n" ); document.write( "Set the two EAR expressions equal to one another. Solve for x\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "(1+x/4)^4 - 1 = 0.0609
\n" ); document.write( "(1+x/4)^4 - 1+1 = 0.0609+1
\n" ); document.write( "(1+x/4)^4 = 1.0609
\n" ); document.write( "[(1+x/4)^4]^(1/4) = (1.0609)^(1/4)
\n" ); document.write( "1+x/4 = 1.01488915650922
\n" ); document.write( "1+x/4 - 1 = 1.01488915650922 - 1
\n" ); document.write( "x/4 = 0.01488915650922
\n" ); document.write( "4*(x/4) = 4*0.01488915650922
\n" ); document.write( "x = 0.05955662603689\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "which rounds to 0.0596 and converts to 5.96%\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So if you have 5.96% compounded quarterly, then it's roughly equivalent to 6% compounded semi-annually.\r
\n" ); document.write( "\n" ); document.write( "================================================================
\n" ); document.write( "Problem 2\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "For each of these, we'll use the same formula as in problem 1
\n" ); document.write( "EAR = (1+r/n)^n - 1
\n" ); document.write( "-----------------
\n" ); document.write( "A)
\n" ); document.write( "r = 0.12
\n" ); document.write( "n = 4
\n" ); document.write( "EAR = (1+r/n)^n - 1
\n" ); document.write( "EAR = (1+0.12/4)^4 - 1
\n" ); document.write( "EAR = 0.12550881
\n" ); document.write( "EAR = 0.1255
\n" ); document.write( "EAR = 12.55%
\n" ); document.write( "-----------------
\n" ); document.write( "B)
\n" ); document.write( "r = 0.115
\n" ); document.write( "n = 12
\n" ); document.write( "EAR = (1+r/n)^n - 1
\n" ); document.write( "EAR = (1+0.115/12)^12 - 1
\n" ); document.write( "EAR = 0.12125932813801
\n" ); document.write( "EAR = 0.1213
\n" ); document.write( "EAR = 12.13%
\n" ); document.write( "-----------------
\n" ); document.write( "C)
\n" ); document.write( "r = 0.117
\n" ); document.write( "n = 2
\n" ); document.write( "EAR = (1+r/n)^n - 1
\n" ); document.write( "EAR = (1+0.117/2)^2 - 1
\n" ); document.write( "EAR = 0.12042225
\n" ); document.write( "EAR = 0.1204
\n" ); document.write( "EAR = 12.04%
\n" ); document.write( "-----------------
\n" ); document.write( "D)
\n" ); document.write( "r = 0.122
\n" ); document.write( "n = 1
\n" ); document.write( "EAR = (1+r/n)^n - 1
\n" ); document.write( "EAR = (1+0.122/1)^1 - 1
\n" ); document.write( "EAR = 0.122
\n" ); document.write( "EAR = 12.2%
\n" ); document.write( "Note: because of annual compounding, the EAR is the same as the nominal APR.
\n" ); document.write( "-----------------
\n" ); document.write( "The smallest EAR value is 12.04%, which is from choice C. That's why choice C is the answer.
\n" ); document.write( "================================================================
\n" ); document.write( "Problem 3\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "EMR = effective monthly rate
\n" ); document.write( "EMR = EAR/12
\n" ); document.write( "12*EMR = EAR
\n" ); document.write( "EAR = 12*EMR\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The EMR is given to be 1.2% = 0.012, so the EAR is,
\n" ); document.write( "EAR = 12*EMR
\n" ); document.write( "EAR = 12*(0.012)
\n" ); document.write( "EAR = 0.144
\n" ); document.write( "EAR = 14.4%
\n" ); document.write( "
\n" );