document.write( "Question 1086461: Prove that sin x+ cos x =sqrt(2)sin(x+pi/4)
\n" );
document.write( "Please show the steps in detail, thank you \n" );
document.write( "
Algebra.Com's Answer #700682 by jim_thompson5910(35256)![]() ![]() ![]() You can put this solution on YOUR website! The identity I'll use is\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "sin(x+y) = sin(x)*cos(y) + cos(x)*sin(y)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "This identity will be used to transform the right side of the original equation like so\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "sin(x) + cos(x) = sqrt(2)*sin(x+pi/4) \n" ); document.write( "sin(x) + cos(x) = sqrt(2) * [sin(x)*cos(pi/4)+cos(x)*sin(pi/4)] \n" ); document.write( "sin(x) + cos(x) = sqrt(2) * [sin(x)*(sqrt(2)/2)+cos(x)*(sqrt(2)/2)] \n" ); document.write( "sin(x) + cos(x) = sqrt(2)*(sqrt(2)/2) * [sin(x)+cos(x)] \n" ); document.write( "sin(x) + cos(x) = ((sqrt(2)*sqrt(2))/2) * [sin(x)+cos(x)] \n" ); document.write( "sin(x) + cos(x) = (sqrt(2*2)/2) * [sin(x)+cos(x)] \n" ); document.write( "sin(x) + cos(x) = (sqrt(4)/2) * [sin(x)+cos(x)] \n" ); document.write( "sin(x) + cos(x) = (2/2) * [sin(x)+cos(x)] \n" ); document.write( "sin(x) + cos(x) = 1 * [sin(x)+cos(x)] \n" ); document.write( "sin(x) + cos(x) = sin(x) + cos(x)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Note how the left side is kept the same. I only changed the right side. The last step confirms we have a true identity because we have the same expression on both sides. \n" ); document.write( " |