document.write( "Question 1086252: A food snack manufacturer samples 7 bags of pretzels off the assembly line and weighs their contents. If the sample mean is 14.2 oz. and the sample standard deviation is 0.60 oz., find the 95% confidence interval of the true mean.\r
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( " \r
\n" );
document.write( "\n" );
document.write( " \r
\n" );
document.write( "\n" );
document.write( " \r
\n" );
document.write( "\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #700628 by rothauserc(4718) You can put this solution on YOUR website! standard error(SE) = 0.60 / square root(7) = 0.2268 \n" ); document.write( ": \n" ); document.write( "alpha(a) = 1 - (95/100) = 0.05 \n" ); document.write( "critical probability (p*): p* = 1 - α/2 = 1 - 0.05/2 = 0.975 \n" ); document.write( "degrees of freedom(df) = 7 - 1 = 6 \n" ); document.write( ": \n" ); document.write( "the critical value(CV) is the t statistic with 6 degrees of freedom and a cumulative probability of 0.975. We lookup these values in the t-tables to \n" ); document.write( "find the critical value is 2.447 \n" ); document.write( ": \n" ); document.write( "margin of error(ME) = CV * SE = 2.447 * 0.2268 = 0.555 \n" ); document.write( ": \n" ); document.write( "confidence interval(CI) = the sample statistic + or - the margin of error \n" ); document.write( ": \n" ); document.write( "******************************************** \n" ); document.write( "95% CI = 14.2 + or - 0.555, (13.645, 14.755) \n" ); document.write( "******************************************** \n" ); document.write( ": \n" ); document.write( " \n" ); document.write( " |