document.write( "Question 1085967: An median of a triangle line segment from a vertex perpendivular to opposite side. Find the length of median with vertices
\n" ); document.write( "V1=(3,-2),(-4,1),(3,-5)
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #700388 by Fombitz(32388)\"\" \"About 
You can put this solution on YOUR website!
The median joins the vertex to the midpoint of the opposing side.
\n" ); document.write( "It's not necessarily perpendicular.
\n" ); document.write( ".
\n" ); document.write( ".
\n" ); document.write( ".
\n" ); document.write( "A:(3,-2)
\n" ); document.write( "B:(-4,1)
\n" ); document.write( "C:(3,-5)
\n" ); document.write( ".
\n" ); document.write( ".
\n" ); document.write( ".
\n" ); document.write( "Find the midpoint of each segment,
\n" ); document.write( "\"x%5BmAB%5D=%283-4%29%2F2=-1%2F2\"
\n" ); document.write( "\"y%5BmAB%5D=%28-2%2B1%29%2F2=-1%2F2\"
\n" ); document.write( "\"x%5BmBC%5D=%28-4%2B3%29%2F2=-1%2F2\"
\n" ); document.write( "\"y%5BmBC%5D=%281-5%29%2F2=-2\"
\n" ); document.write( "\"x%5BmAC%5D=%283%2B3%29%2F2=3\"
\n" ); document.write( "\"y%5BmAC%5D=%28-2-5%29%2F2=-7%2F2\"
\n" ); document.write( ".
\n" ); document.write( ".
\n" ); document.write( ".
\n" ); document.write( ".
\n" ); document.write( ".
\n" ); document.write( ".
\n" ); document.write( ".
\n" ); document.write( "You can then find the lengths of each median using the distance formula,
\n" ); document.write( "\"M%5BA%5D%5E2=%283-%28-1%2F2%29%29%5E2%2B%28-2-%28-2%29%29%5E2\"
\n" ); document.write( "\"M%5BB%5D%5E2=%28-4-3%29%5E2%2B%281-%28-7%2F2%29%29%5E2\"
\n" ); document.write( "\"M%5BC%5D%5E2=%283-%28-1%2F2%29%29%5E2%2B%28-5-%28-1%2F2%29%29%5E2\"
\n" ); document.write( "Work those out for the final answers.
\n" ); document.write( "
\n" );