document.write( "Question 1085967: An median of a triangle line segment from a vertex perpendivular to opposite side. Find the length of median with vertices
\n" );
document.write( "V1=(3,-2),(-4,1),(3,-5)
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #700388 by Fombitz(32388)![]() ![]() You can put this solution on YOUR website! The median joins the vertex to the midpoint of the opposing side. \n" ); document.write( "It's not necessarily perpendicular. \n" ); document.write( ". \n" ); document.write( ". \n" ); document.write( ". \n" ); document.write( "A:(3,-2) \n" ); document.write( "B:(-4,1) \n" ); document.write( "C:(3,-5) \n" ); document.write( ". \n" ); document.write( ". \n" ); document.write( ". \n" ); document.write( "Find the midpoint of each segment, \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( ". \n" ); document.write( ". \n" ); document.write( ". \n" ); document.write( " \n" ); document.write( ". \n" ); document.write( ". \n" ); document.write( ". \n" ); document.write( "You can then find the lengths of each median using the distance formula, \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "Work those out for the final answers. \n" ); document.write( " |