document.write( "Question 1085933: Set up, but do not evaluate, the integral which gives the volume when the region bounded by the curves y = Ln(x), y = 1, and x = 1 is revolved around the line y = −3.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #700032 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
Graph:
\n" ); document.write( "
\n" ); document.write( "f(x) = Ln(x) (green curve)
\n" ); document.write( "g(x) = 1 (red horizontal line)
\n" ); document.write( "x = 1 (blue vertical line)
\n" ); document.write( "y = -3 (black dashed line)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Outer radius = R
\n" ); document.write( "R = vertical distance from the red horizontal line to the black dashed horizontal line
\n" ); document.write( "R = 1 - (-3)
\n" ); document.write( "R = 1 + 3
\n" ); document.write( "R = 4\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Inner radius = r
\n" ); document.write( "r = vertical distance from the green curve to the black dashed horizontal line
\n" ); document.write( "r = Ln(x) - (-3)
\n" ); document.write( "r = Ln(x) + 3
\n" ); document.write( "In contrast to R, the inner radius will change based on x\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Find the intersection point between the green curve and the red line
\n" ); document.write( "y = Ln(x)
\n" ); document.write( "1 = Ln(x)
\n" ); document.write( "e^1 = x
\n" ); document.write( "x = e
\n" ); document.write( "The intersection point is (x,y) = (e,1) where e = 2.71828 approximately\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the shaded orange region shown below
\n" ); document.write( "
\n" ); document.write( "represents the region we want to revolve around y = -3 to form the solid of revolution. We're going from a = 1 to b = e\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The integral to set up is therefore\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" );