document.write( "Question 1085694: Obtain the condition that lx+my+n =0 may be tangent to the circle x^2+y^2+2gx+2fy+c=0 \n" ); document.write( "
Algebra.Com's Answer #699794 by Fombitz(32388)![]() ![]() You can put this solution on YOUR website! Let the point of intersection be (u,v). \n" ); document.write( "So then, \n" ); document.write( " \n" ); document.write( "and \n" ); document.write( " \n" ); document.write( "You know that the slope of the tangent line is equal to the value of the derivative at the intersection point. \n" ); document.write( "Find the derivative using implicit differentiation, \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "So then at (u,v), \n" ); document.write( " \n" ); document.write( "Using the point slope form of a line, \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "Comparing, \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |