document.write( "Question 1085663: Please may you help me solve:f(x)=|6-2x|+|X-1|-2X giving the necessary arguments before graphing.what is the range of the function?whenf(x)>0? \n" ); document.write( "
Algebra.Com's Answer #699735 by ikleyn(52790)![]() ![]() You can put this solution on YOUR website! . \n" ); document.write( " \r\n" ); document.write( "The critical points are 6-2x = 0, i.e. x = 3; and x-1=0, i.e. x = 1.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "If x < 1, then 6 - 2x > 0 and hence |6-2x} = (6-2x);\r\n" ); document.write( "\r\n" ); document.write( " x - 1 < 0 and hence |x-1| = (1-x);\r\n" ); document.write( "\r\n" ); document.write( " thus the entire function is f(x) = (6-2x) + (1-x) - 2x = 7 - 5x. \r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "If 1 < x < 3, then 6 - 2x > 0 and hence |6-2x} = (6-2x);\r\n" ); document.write( "\r\n" ); document.write( " x - 1 > 0 and hence |x-1| = (x-1);\r\n" ); document.write( "\r\n" ); document.write( " thus the entire function is f(x) = (6-2x) + (x-1) - 2x = 5 - 3x.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Lastly, if x > 3 then 6 - 2x < 0 and hence |6-2x} = (-6+2x);\r\n" ); document.write( "\r\n" ); document.write( " x - 1 > 0 and hence |x-1| = (x-1);\r\n" ); document.write( "\r\n" ); document.write( " thus the entire function is f(x) = (-6+2x) + (x-1) - 2x = -7 + x.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "So you have the expressions for f(x) piecewise linear and can draw it like this\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "On plotting absolute value functions see the lessons\r \n" ); document.write( "\n" ); document.write( " How to plot functions containing Linear Terms under the Absolute Value sign. Lesson 1 \r \n" ); document.write( "\n" ); document.write( " How to plot functions containing Linear Terms under the Absolute Value sign. Lesson 2 \r \n" ); document.write( "\n" ); document.write( " How to plot functions containing Linear Terms under the Absolute Value sign. Lesson 3 \r \n" ); document.write( "\n" ); document.write( "in this site.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Also, you have this free of charge online textbook in ALGEBRA-I in this site\r \n" ); document.write( "\n" ); document.write( " - ALGEBRA-I - YOUR ONLINE TEXTBOOK.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The referred lessons are the part of this online textbook under the topic \n" ); document.write( "\"Plotting Absolute values functions \".\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The strategy is to break up the entire set of real numbers into sub-domains (ranges) where the absolute value of linear term \n" ); document.write( "is a linear function, and then to plot all these piece-wise linear functions.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |