document.write( "Question 1085653: 1. Given the following polynomial: 2x^2 + 7x - 15 = 0 Check all that apply.\r
\n" ); document.write( "\n" ); document.write( " The value of the discriminant is 169.
\n" ); document.write( " There are 2 real roots.
\n" ); document.write( " There are 2 irrational roots.
\n" ); document.write( " The graph intersects the y-axis twice.
\n" ); document.write( " The parabola is directed upward.
\n" ); document.write( " The axis of symmetry is located at: x = -7/4
\n" ); document.write( " The vertex is located at: (-7/4, -49/8)
\n" ); document.write( " The roots are: {5,3/2}
\n" ); document.write( " The graph intersects the y axis at (0, -15).
\n" ); document.write( " The graph intersects the x-axis at (-5, 0) and (1.5, 0)\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "II.
\n" ); document.write( "Use the quadratic formula to solve the following: 3x^2 - x + 2 = 0
\n" ); document.write( "

Algebra.Com's Answer #699713 by MathLover1(20850)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "I. Given the following polynomial:
\n" ); document.write( "\"2x%5E2+%2B+7x+-+15+=+0+\"\r
\n" ); document.write( "\n" ); document.write( "Check all that apply.
\n" ); document.write( "\"b%5E2-4ac=7%5E2-4%2A2%28-15%29=49%2B120=169\"
\n" ); document.write( " The value of the discriminant is \"169\".\r
\n" ); document.write( "\n" ); document.write( " There are \"2+\"real roots.
\n" ); document.write( "\"discriminant%3E0\", so there are 2 real roots\r
\n" ); document.write( "\n" ); document.write( " The parabola is directed upward.
\n" ); document.write( "since \"a=2\" which is positive number, the parabola\"+is\" directed upward\r
\n" ); document.write( "\n" ); document.write( " The axis of symmetry is located at: \"x+=+-7%2F4\"\r
\n" ); document.write( "\n" ); document.write( "\"2+%28x+%2B+7%2F4%29%5E2+-+169%2F8+=+0\"-> \"h=-7%2F4\"->the axis of symmetry goes through vertex (\"-7%2F4\",\"-+169%2F8\") and it is a vertical line \"x+=+-7%2F4\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " The graph intersects the y axis at (\"0\",\"+-15\").
\n" ); document.write( "\"y=2x%5E2+%2B+7x+-+15+\"
\n" ); document.write( "\"y=2%2A0%5E2+%2B+7x%2A+-+15\"
\n" ); document.write( "\"y=-15\"\r
\n" ); document.write( "\n" ); document.write( " The graph intersects the x-axis at (\"-5\", \"0\") and (\"1.5\",\"+0\")
\n" ); document.write( "\"%28x+%2B+5%29+%282+x+-+3%29+=+0\"
\n" ); document.write( "\"%28x+%2B+5%29++=+0\" -> \"x=-5\" -> point (\"-5\", \"0\")
\n" ); document.write( "\"%282+x+-+3%29+=+0+\"-> \"x=3%2F2=1.5+\"-> (\"1.5\",\"+0\") \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"+graph%28+600%2C+600%2C+-10%2C+10%2C+-20%2C+10%2C+2x%5E2+%2B+7x+-+15%29+\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "II.
\n" ); document.write( "Use the quadratic formula to solve the following: \r
\n" ); document.write( "\n" ); document.write( "\"3x%5E2+-+x+%2B+2+=+0+\"\r
\n" ); document.write( "\n" ); document.write( "\"x+=+%28-b+%2B-+sqrt%28+b%5E2-4%2Aa%2Ac+%29%29%2F%282%2Aa%29+\" \r
\n" ); document.write( "\n" ); document.write( "\"x+=+%28-%28-1%29+%2B-+sqrt%28+%28-1%29%5E2-4%2A3%2A2+%29%29%2F%282%2A3%29+\" \r
\n" ); document.write( "\n" ); document.write( "\"x+=+%281+%2B-+sqrt%281-24+%29%29%2F6+\" \r
\n" ); document.write( "\n" ); document.write( "\"x+=+%281+%2B-+sqrt%28-23+%29%29%2F6+\" \r
\n" ); document.write( "\n" ); document.write( "\"x+=+%281+%2B-+i%2Asqrt%2823+%29%29%2F6+\" \r
\n" ); document.write( "\n" ); document.write( "solutions:\r
\n" ); document.write( "\n" ); document.write( "\"x+=+%281%2F6%29%281+%2B+i%2Asqrt%2823+%29%29+\" \r
\n" ); document.write( "\n" ); document.write( "\"x+=+%281%2F6%29%281+-+i%2Asqrt%2823+%29%29+\" \r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );