document.write( "Question 1085372: the first numbers p-1,2p-2 and 3p-1 are the first three terms of a Gp where p>0 find
\n" ); document.write( "(i) the sum to infinity
\n" ); document.write( "

Algebra.Com's Answer #699425 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
GP means \"geometric progression\" which is another way to say \"geometric sequence\".\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Term 1 = p-1
\n" ); document.write( "Term 2 = 2p-2
\n" ); document.write( "Term 3 = 3p-1\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The common ratio r is the ratio of adajcent terms.
\n" ); document.write( "Specifically it's the result of dividing any term (but the first one) over its previous term.
\n" ); document.write( "The basic template is\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "common ratio = (any term but the first term)/(previous term)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Using that template, we can divide term 2 over term 1 to get\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "r = (term 2)/(term 1)
\n" ); document.write( "r = (2p-2)/(p-1)
\n" ); document.write( "r = (2(p-1))/(p-1)
\n" ); document.write( "r = 2\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The (p-1) terms cancel out leaving r = 2, which is the common ratio. \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Using the same template, we can divide term 3 over term 2 to get\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "r = (term 3)/(term 2)
\n" ); document.write( "r = (3p-1)/(2p-2)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Plug in r = 2 and solve for p.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "r = (3p-1)/(2p-2)
\n" ); document.write( "2 = (3p-1)/(2p-2)
\n" ); document.write( "2(2p-2) = [(3p-1)/(2p-2)]*(2p-2)
\n" ); document.write( "2(2p-2) = 3p-1
\n" ); document.write( "4p-4 = 3p-1
\n" ); document.write( "4p-3p = -1+4
\n" ); document.write( "p = -1+4
\n" ); document.write( "p = 3\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "We know the value of p is p = 3, so make substitutions to get\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Term 1 = p-1 = 3-1 = 2
\n" ); document.write( "Term 2 = 2p-2 = 2*3-2 = 4
\n" ); document.write( "Term 3 = 3p-1 = 3*3-1 = 8\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The first three terms are\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Term 1 = 2
\n" ); document.write( "Term 2 = 4
\n" ); document.write( "Term 3 = 8\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the GP is 2,4,8,...\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "This GP goes on forever and there is no limit to how big the terms grow.
\n" ); document.write( "This means that the sum to infinity is not a fixed number.
\n" ); document.write( "The sum will be infinity implying that it keeps growing forever (much like the terms do).
\n" ); document.write( "For this current problem, we cannot find the sum to infinity. \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The only way to have the sum be a finite number, we need to have the common ratio r be between 0 and 1.
\n" ); document.write( "The value of r can't equal 0. The value of r can't equal 1.
\n" ); document.write( "Put another way we need \"0+%3C+r+%3C+1\" for the series to converge.
\n" ); document.write( "If \"r+%3E=+1\", then the series diverges.
\n" ); document.write( "
\n" );