document.write( "Question 1084921: the center of a circle is at (4,2) and its radius is 5. find the length of the chord which is bisected at (2,-1).
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #699071 by Fombitz(32388)![]() ![]() You can put this solution on YOUR website! Determine the slope of the line from (4,2) to (2,-1). \n" ); document.write( " \n" ); document.write( "Now determine the slope of the bisector since they're perpendicular, \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "Determine the equation of the line using the point and the slope, \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( ". \n" ); document.write( ". \n" ); document.write( ". \n" ); document.write( " \n" ); document.write( ". \n" ); document.write( ". \n" ); document.write( ". \n" ); document.write( "Now find the intersection of that line with the circle. \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( ". \n" ); document.write( ". \n" ); document.write( ". \n" ); document.write( " \n" ); document.write( ". \n" ); document.write( ". \n" ); document.write( ". \n" ); document.write( "So then, \n" ); document.write( " \n" ); document.write( "Finally calculate the distance from the two intersection points using the distance formula, that's the length of the chord. \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " |