document.write( "Question 1084646: Statistics calculated from a sample of 22 observations are: \r
\n" ); document.write( "\n" ); document.write( "{screenshot for better representation of equation: http://imgur.com/a/Qc4VK }\r
\n" ); document.write( "\n" ); document.write( "∑ (n=22 and i=1) x = 1451\r
\n" ); document.write( "\n" ); document.write( "∑ (n=22 and i=1) x^2 = 106639\r
\n" ); document.write( "\n" ); document.write( "(a) Find the sample mean: I found this to be 1451/22
\n" ); document.write( " \r
\n" ); document.write( "\n" ); document.write( "(b) What is the sample standard deviation?
\n" ); document.write( " \r
\n" ); document.write( "\n" ); document.write( "(c) Assume that the population distribution is normal. Find a 95% confidence interval for the population mean. ( , )
\n" ); document.write( "

Algebra.Com's Answer #698717 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
Part (a)
\n" ); document.write( "Correct. The fraction 1451/22 approximates to 65.9545454545454
\n" ); document.write( "-------------------------------------------------------
\n" ); document.write( "Part (b)
\n" ); document.write( "Notation notes:
\n" ); document.write( "When I say \"sigma(X^2)\" I mean which in this case is 106639
\n" ); document.write( "Similarly, \"sigma(X)\" means which in this case is 1451\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Using those values and n = 22, we can use the formula below to get\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "s = sqrt( (n*sigma(X^2)-(sigma(X))^2)/(n*(n-1)) )
\n" ); document.write( "s = sqrt( (22*106639-(1451)^2)/(22*(22-1)) )
\n" ); document.write( "s = sqrt( (22*106639-2105401)/(22*21) )
\n" ); document.write( "s = sqrt( (2346058-2105401)/(462) )
\n" ); document.write( "s = sqrt( (240657)/(462) )
\n" ); document.write( "s = sqrt( 520.902597402597 )
\n" ); document.write( "s = 22.8232906786598\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "which is the approximate answer to part (b)
\n" ); document.write( "-------------------------------------------------------
\n" ); document.write( "Part (c)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "We're given n = 22 as the sample size.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Because n > 30 is not true and we don't know sigma (population standard deviation) we must use the T distribution.
\n" ); document.write( "The degrees of freedom (df) are
\n" ); document.write( "df = n-1
\n" ); document.write( "df = 22-1
\n" ); document.write( "df = 21\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The value of xbar is approximately 65.9545454545454 as done in part (a)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Use a table such as this one to locate the df = 21 row.
\n" ); document.write( "I have marked this row with a red rectangle (see below)
\n" ); document.write( "In this df = 21 row, mark the value that is directly over top the \"95%\" confidence level
\n" ); document.write( "I marked this entire column with a blue rectangle (see below)
\n" ); document.write( "The red and blue rectangles intersect at the value 2.080
\n" ); document.write( "
\n" ); document.write( "So the t critical value is t = 2.080\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Earlier in part (b) we calculated the sample standard deviation to be approximately s = 22.8232906786598\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "We take these values (xbar = 65.9545454545454, t = 2.080, s = 22.8232906786598, n = 22) to plug into the formulas below\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "L = xbar - t*(s/sqrt(n))
\n" ); document.write( "L = 65.9545454545454 - 2.08*(22.8232906786598/sqrt(22))
\n" ); document.write( "L = 65.9545454545454 - 2.08*(22.8232906786598/4.69041575982343)
\n" ); document.write( "L = 65.9545454545454 - 2.08*(4.8659419222826)
\n" ); document.write( "L = 65.9545454545454 - 10.1211591983478
\n" ); document.write( "L = 55.8333862561976\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "U = xbar + t*(s/sqrt(n))
\n" ); document.write( "U = 65.9545454545454 + 2.08*(22.8232906786598/sqrt(22))
\n" ); document.write( "U = 65.9545454545454 + 2.08*(22.8232906786598/4.69041575982343)
\n" ); document.write( "U = 65.9545454545454 + 2.08*(4.8659419222826)
\n" ); document.write( "U = 65.9545454545454 + 10.1211591983478
\n" ); document.write( "U = 76.0757046528932\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The 95% confidence interval for the mean (mu) is (L,U) = (55.8333862561976,76.0757046528932), which is an approximate interval.
\n" ); document.write( "
\n" ); document.write( "
\n" );