document.write( "Question 1084647: A supermarket manager wishes to make an estimate of the average time in minutes a customer spends at the checkout counter. It is known from previous studies that the variance is 10.8. How large a sample is required if she wants a 95% confidence interval for the population mean that extends no further than 0.7 minutes from the sample mean. Round up your answer to a whole number. \r
\n" ); document.write( "\n" ); document.write( "I gound the answer to be 8468 but it is incorrect.
\n" ); document.write( "

Algebra.Com's Answer #698712 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "The formula to be used is
\n" ); document.write( "n = ( (z*sigma)/E )^2\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "where,
\n" ); document.write( "n = min sample size needed
\n" ); document.write( "z = critical value drawn from the standard normal (Z) distribution
\n" ); document.write( "sigma = population standard deviation
\n" ); document.write( "E = margin of error desired\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "At 95% confidence, we can find the z critical value to be approximately z = 1.96
\n" ); document.write( "Look at the statistics table.
\n" ); document.write( "Locate \"95%\" at the bottom where the confidence levels are. The value just above \"95%\" is \"1.960\" which is the same as 1.96
\n" ); document.write( "A table like the one I have linked is often found in the back of any statistics textbook.
\n" ); document.write( "So this is why z = 1.96, which is approximate.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The variance is given to be 10.8. Take the square root of the variance to get the standard deviation (sigma)
\n" ); document.write( "sigma = sqrt(variance)
\n" ); document.write( "sigma = sqrt(10.8)
\n" ); document.write( "sigma = 3.286335345031
\n" ); document.write( "which is approximate\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The error desired is E = 0.7 because we want the upper or lower end of the confidence interval to be at most 0.7 units away from the center xbar.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "----------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Summarizing what we have so far:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "z = 1.96
\n" ); document.write( "sigma = 3.286335345031
\n" ); document.write( "E = 0.7\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "----------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Plug those three values mentioned above into the formula below\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "n = ( (z*sigma)/E )^2\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "n = ( (1.96*3.286335345031)/0.7 )^2\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "n = ( (6.44121727626076)/0.7 )^2\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "n = ( 9.2017389660868 )^2\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "n = 84.6720000000002\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "n = 85 Round up to the nearest whole number\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Min Sample Size: n = 85\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "On the last step, we ALWAYS round up regardless of the decimal portion.
\n" ); document.write( "This rounding up is to ensure that we clear the hurdle.
\n" ); document.write( "If we rounded down, then E > 0.7, which is too large.
\n" ); document.write( "The goal is to make \"E+%3C=+0.7\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "----------------------------------------------------
\n" ); document.write( "----------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Final Answer: 85
\n" ); document.write( "
\n" ); document.write( "
\n" );