document.write( "Question 1084407: If I've: (U-3V)=(1;5) and (-U+V)=(-5;3)\r
\n" );
document.write( "\n" );
document.write( "What's the angle between U and V?? Thank you VERY MUCH !! \n" );
document.write( "
Algebra.Com's Answer #698522 by jim_thompson5910(35256)![]() ![]() ![]() You can put this solution on YOUR website! Let U and V be two vectors of the form\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "U = (a,b) \n" ); document.write( "V = (c,d)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "where a,b,c,d are scalars and are in the set of real numbers.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "----------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Using those definitions, we can say\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "U - 3V = 1*U + (-3)*V \n" ); document.write( "U - 3V = 1*(a,b) + (-3)*(c,d) \n" ); document.write( "U - 3V = (a,b) + (-3c,-3d) \n" ); document.write( "U - 3V = (a-3c,b-3d)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Since U-3V also equals (1,5), which is given, this means\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "(a-3c,b-3d) = (1,5)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "further breaking down to\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "a-3c = 1 \n" ); document.write( "b-3d = 5\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Let's refer to these equations as (1) and (2).\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "-----------------------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Similarly,\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "-U + V = -1*U + 1*V \n" ); document.write( "-U + V = -1*(a,b) + 1*(c,d) \n" ); document.write( "-U + V = (-a,-b) + (c,d) \n" ); document.write( "-U + V = (-a+c,-b+d)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Since -U + V also equals (-5,3), this means\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "(-a+c,-b+d) = (-5,3)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "further breaking down into\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "-a+c = -5 \n" ); document.write( "-b+d = 3\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Let's refer to these equations as (3) and (4).\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "-----------------------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Group equation (1) and (3) together to get this system\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "a-3c = 1 \n" ); document.write( "-a+c = -5\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Adding those equations together leads to -2c = -4 so c = 2\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "If c = 2, then... \n" ); document.write( "a-3c = 1 \n" ); document.write( "a-3(2) = 1 \n" ); document.write( "a-6 = 1 \n" ); document.write( "a-6+6 = 1+6 \n" ); document.write( "a = 7\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "So far we know that a = 7 and c = 2\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "-----------------------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Now group equation (2) and (4) together and solve the system\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "b-3d = 5 \n" ); document.write( "-b+d = 3\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Adding those equations leads to -2d = 8 so d = -4\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "If d = -4, then, \n" ); document.write( "-b+d = 3 \n" ); document.write( "-b+(-4) = 3 \n" ); document.write( "-b-4 = 3 \n" ); document.write( "-b-4+4 = 3+4 \n" ); document.write( "-b = 7 \n" ); document.write( "b = -7\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "-----------------------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "To wrap up everything so far, we found that\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "a = 7 \n" ); document.write( "b = -7 \n" ); document.write( "c = 2 \n" ); document.write( "d = -4\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "making \n" ); document.write( "U = (a,b) and V = (c,d) \n" ); document.write( "turn into \n" ); document.write( "U = (7,-7) and V = (2,-4)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "-----------------------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "We have the coordinates of U and V, so we can now compute the angle theta between them.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "First we'll need the dot product\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "U dot V = a*c + b*d \n" ); document.write( "U dot V = 7*2 + (-7)*(-4) \n" ); document.write( "U dot V = 14 + 28 \n" ); document.write( "U dot V = 42\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Now we need the length of each vector\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Let's find the length of vector U\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "|U| = sqrt(U dot U) \n" ); document.write( "|U| = sqrt(a*a + b*b) \n" ); document.write( "|U| = sqrt(a^2 + b^2) \n" ); document.write( "|U| = sqrt(7^2 + (-7)^2) \n" ); document.write( "|U| = sqrt(49 + 49) \n" ); document.write( "|U| = sqrt(49*2) \n" ); document.write( "|U| = sqrt(49)*sqrt(2) \n" ); document.write( "|U| = 7*sqrt(2)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "And we also need the length of vector V\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "|V| = sqrt(V dot V) \n" ); document.write( "|V| = sqrt(c*c + d*d) \n" ); document.write( "|V| = sqrt(c^2 + d^2) \n" ); document.write( "|V| = sqrt(2^2 + (-4)^2) \n" ); document.write( "|V| = sqrt(4 + 16) \n" ); document.write( "|V| = sqrt(20) \n" ); document.write( "|V| = sqrt(4*5) \n" ); document.write( "|V| = sqrt(4)*sqrt(5) \n" ); document.write( "|V| = 2*sqrt(5)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "-----------------------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "It's a lot of work, but we're at the home stretch. Plug the dot product result, and the vector lengths, into the formula below to find \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "----------------------------------- \n" ); document.write( "-----------------------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Final Answer: 18.4349488229 degrees\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The answer is approximate. Round it however you need to.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Side Note: The answer has been confirmed with GeoGebra (free graphing software) as shown below \n" ); document.write( " ![]() \n" ); document.write( "The vectors \"check1\" and \"check2\" are defined to be \n" ); document.write( "check1 = U - 3V \n" ); document.write( "check2 = -U + V \n" ); document.write( "so that part is confirmed as well. \n" ); document.write( " |