document.write( "Question 1084384: Use the remainder theorem to determine whether x - 2 is a factor of
\n" ); document.write( "f(x) = x^3 + 3x^2 - x - 18
\n" ); document.write( "

Algebra.Com's Answer #698483 by ikleyn(52782)\"\" \"About 
You can put this solution on YOUR website!
.
\n" ); document.write( "The Remainder Theorem says:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r\n" );
document.write( "     The binomial  \"x-a\"  divides the polynomial  \"f%28x%29\"  if and only if the value of  \"a\"  is the root of the polynomial  \"f%28x%29\",  i.e.  \"f%28a%29+=+0\".\r\n" );
document.write( "
\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So,  to check if  (x-2)  is the factor of  f(x) = x^3 + 3x^2 - x - 18,  we need to calculate the value  f(2). \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "It is  f(2) = \"2%5E3+%2B+3%2A2%5E2+-+x+-+18\" = 8 + 3*4 - 2 - 18 = 0.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Thus according to the Remainder Theorem  (x-2)  is the factor of the given polynomial  f(x).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Solved.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "------------------
\n" ); document.write( "   Theorem   (the remainder theorem)\r
\n" ); document.write( "\n" ); document.write( "   1. The remainder of division the polynomial  \"f%28x%29\"  by the binomial  \"x-a\"  is equal to the value  \"f%28a%29\"  of the polynomial. \r
\n" ); document.write( "\n" ); document.write( "   2. The binomial  \"x-a\"  divides the polynomial  \"f%28x%29\"  if and only if the value of  \"a\"  is the root of the polynomial  \"f%28x%29\",  i.e.  \"f%28a%29+=+0\".\r
\n" ); document.write( "\n" ); document.write( "   3. The binomial  \"x-a\"  factors the polynomial  \"f%28x%29\"  if and only if the value of  \"a\"  is the root of the polynomial  \"f%28x%29\",  i.e.  \"f%28a%29+=+0\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "See the lesson\r
\n" ); document.write( "\n" ); document.write( "    - Divisibility of polynomial f(x) by binomial x-a\r
\n" ); document.write( "\n" ); document.write( "in this site.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Also,  you have this free of charge online textbook in ALGEBRA-II in this site\r
\n" ); document.write( "\n" ); document.write( "    ALGEBRA-II - YOUR ONLINE TEXTBOOK.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The referred lessons are the part of this online textbook under the topic
\n" ); document.write( "\"Divisibility of polynomial f(x) by binomial (x-a). The Remainder theorem\".\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );