document.write( "Question 1083556: For what value of k , line 3x+4y+k=0 is tangent to the circle x^2+y^2+6x-y-1=0?
\n" ); document.write( "a)13
\n" ); document.write( "a)19
\n" ); document.write( "c)25
\n" ); document.write( "d)30
\n" ); document.write( "

Algebra.Com's Answer #697581 by Alan3354(69443)\"\" \"About 
You can put this solution on YOUR website!
For what value of k , line 3x+4y+k=0 is tangent to the circle x^2+y^2+6x-y-1=0?
\n" ); document.write( "------------
\n" ); document.write( "3x+4y+k=0
\n" ); document.write( "y = (-3/4)x - k/4
\n" ); document.write( "Slope m = -3/4
\n" ); document.write( "================
\n" ); document.write( "x^2+y^2+6x-y-1=0
\n" ); document.write( "x^2 + 6x + 9 + y^2 - y + 1/4 = 1 + 9 + 1/4 = 10.25
\n" ); document.write( "\"%28x%2B3%29%5E2+%2B+%28y-1%2F2%29%5E2+=+10.25\"
\n" ); document.write( "The center is (-3,1/2)
\n" ); document.write( "Find the line thru the center perpendicular to the given line.
\n" ); document.write( "---
\n" ); document.write( "slope = -1/m = 4/3
\n" ); document.write( "y- 1/2 = (4/3)*(x+3)
\n" ); document.write( "The 2 tangent points are the intersection of y- 1/2 = (4/3)*(x+3) and the circle.
\n" ); document.write( "----
\n" ); document.write( "2y- 1 = (8/3)*(x+3) = 8x/3 + 8
\n" ); document.write( "y = 4x/3 + 9/2
\n" ); document.write( "---
\n" ); document.write( "x^2+y^2+6x-y-1=0
\n" ); document.write( "Sub for y
\n" ); document.write( "x^2 + (4x/3 + 9/2)^2 + 6x - (4x/3 + 9/2) - 1 = 0
\n" ); document.write( "x^2 + 16x^2/9 + 12x + 81/4 + 6x - 4x/3 - 9/2 - 1 = 0
\n" ); document.write( "25x^2/9 + 50x/3 + 59/4 = 0
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( " \n" ); document.write( "\n" ); document.write( "
Solved by pluggable solver: SOLVE quadratic equation (work shown, graph etc)
Quadratic equation \"ax%5E2%2Bbx%2Bc=0\" (in our case \"2.77777777777778x%5E2%2B16.6666666666667x%2B14.75+=+0\") has the following solutons:
\n" ); document.write( "
\n" ); document.write( " \"x%5B12%5D+=+%28b%2B-sqrt%28+b%5E2-4ac+%29%29%2F2%5Ca\"
\n" ); document.write( "
\n" ); document.write( " For these solutions to exist, the discriminant \"b%5E2-4ac\" should not be a negative number.
\n" ); document.write( "
\n" ); document.write( " First, we need to compute the discriminant \"b%5E2-4ac\": \"b%5E2-4ac=%2816.6666666666667%29%5E2-4%2A2.77777777777778%2A14.75=113.88888888889\".
\n" ); document.write( "
\n" ); document.write( " Discriminant d=113.88888888889 is greater than zero. That means that there are two solutions: \"+x%5B12%5D+=+%28-16.6666666666667%2B-sqrt%28+113.88888888889+%29%29%2F2%5Ca\".
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " Quadratic expression \"2.77777777777778x%5E2%2B16.6666666666667x%2B14.75\" can be factored:
\n" ); document.write( "
\n" ); document.write( " Again, the answer is: -1.07906272877014, -4.92093727122987.\n" ); document.write( "Here's your graph:
\n" ); document.write( "

\n" ); document.write( "\n" ); document.write( "==================
\n" ); document.write( "find the y values, then the equations of the lines thru the 2 points with a slope of -3/4.
\n" ); document.write( "then find 2 values for k.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );