document.write( "Question 1081177: Let f(x)=3x^4 + 7x^3 + ax^2 + bx -14 where a and b are constants.If (x-1) is a factor of f(x) and when f(x) is divided by (x+1), the remainder is -12, find the values of a and b. With these values of a and b,\r
\n" );
document.write( "\n" );
document.write( "(A) find a factor of f(x) in the form x+k where k is a postive integer.
\n" );
document.write( "(B) write f(x) in the form
\n" );
document.write( " f(x)=(x-1)(x+k)Q(x),where Q(x)is a real quadratic.\r
\n" );
document.write( "\n" );
document.write( "Hence,show that Q(x) is irreducible. \n" );
document.write( "
Algebra.Com's Answer #695237 by josgarithmetic(39625) ![]() You can put this solution on YOUR website! x+1 is a factor.\r \n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( " 1 | 3 7 a b -14\r\n" ); document.write( " |\r\n" ); document.write( " |---------------------------\r\n" ); document.write( "\r\n" ); document.write( " 3 10 10+a b+a+10 a+b-4\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Remainder must be equal to zero.\r\n" ); document.write( "\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Division by x+1 gives remainder of -12.\r \n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( " -1 | 3 7 a b -14\r\n" ); document.write( " |\r\n" ); document.write( " |---------------------------\r\n" ); document.write( " 3 4 a-4 b-a+4 a-b-18\r\n" ); document.write( "\r\n" ); document.write( "Remainder is given as -12.\r\n" ); document.write( "\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "System to solve for a and b: \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Looking at the cubic result for the first synthetic division, you have \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "---- \n" ); document.write( " |