document.write( "Question 1080724: please help!!!\r
\n" );
document.write( "\n" );
document.write( "Find the equation for the tangent lines, and the normal lines, to the hyperbolas y^2/4-x^2/2=1 when x=4. \n" );
document.write( "
Algebra.Com's Answer #694829 by Fombitz(32388) You can put this solution on YOUR website! The slope of the tangent line is equal to the value of the derivative at that point. \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "Implicitly differentiate, \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "So then, \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "So for (4,6), \n" ); document.write( " \n" ); document.write( "Using the point slope form of a line, \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "and for (4,-6) \n" ); document.write( " \n" ); document.write( "and \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "To get the normal lines, you know that the tangent and normal lines are perpendicular to each other. \n" ); document.write( "So the slopes are negative reciprocals, \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "and \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "So then, \n" ); document.write( "(4,6) \n" ); document.write( " \n" ); document.write( "(4,-6) \n" ); document.write( " \n" ); document.write( "I leave those to you to put into slope-intercept form.\r \n" ); document.write( "\n" ); document.write( ". \n" ); document.write( ". \n" ); document.write( ". \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " |