document.write( "Question 1079386: If a+b=3 and a^3+b^3=6, given the formula (a+b)^3 = a^3+3a^2b+3ab^2+b^3, find the value of ab. Hence, find the value of a^2+b^2.\r
\n" );
document.write( "\n" );
document.write( "All I figured out was that a^2-ab+b^2=2\r
\n" );
document.write( "\n" );
document.write( "Thank you honestly so much for your time and effort! \n" );
document.write( "
Algebra.Com's Answer #693693 by htmentor(1343)![]() ![]() You can put this solution on YOUR website! Given: a+b=3, a^3+b^3=6 \n" ); document.write( "(a+b)^3 = a^3+3a^2b+3ab^2+b^3 \n" ); document.write( "Since a^3+b^3=6 and a+b=3, we have \n" ); document.write( "3^3 = 6 + 3a^2b + 3ab^2 \n" ); document.write( "21 = 3a^2b + 3ab^2 \n" ); document.write( "Pulling out the common factor 3ab, we get \n" ); document.write( "21 = 3ab(a+b) = 3*3*ab \n" ); document.write( "Thus ab = 21/9 = 7/3 \n" ); document.write( "(a+b)^2 = a^2+b^2+2ab \n" ); document.write( "Subtract 2ab from both sides: \n" ); document.write( "(a+b)^2 - 2ab = a^2 + b^2 \n" ); document.write( "3^2 - 2(7/3) = a^2 + b^2 \n" ); document.write( "9 - 14/3 = (27-14)/3 = 13/3 \n" ); document.write( "So a^2 + b^2 = 13/3 \n" ); document.write( " |