document.write( "Question 1079044: Please help me solve this
\n" );
document.write( "Consider the function f(x) = x^3 + px + q.
\n" );
document.write( "(a) Determine the values of p and q if f(x) has a stationary point at (−2,3).
\n" );
document.write( "(b) Show, using calculus, that there is a second stationary point at (2,−29), and classify both
\n" );
document.write( "stationary points.
\n" );
document.write( "(c) Determine f′′(x) and hence show that there is a non-stationary point of inflection and determine its coordinates.
\n" );
document.write( "(d) For what values of k would the equation f(x) = k have 3 distinct solutions. Give reasons for your answer.
\n" );
document.write( "(Hint: Sketch the graph of y = f(x).) \n" );
document.write( "
Algebra.Com's Answer #693408 by rothauserc(4718)![]() ![]() You can put this solution on YOUR website! A stationary point is where the first derivative is defined and equal to zero \n" ); document.write( ": \n" ); document.write( "f'(x) = 3x^2 + p \n" ); document.write( ": \n" ); document.write( "we know x = -2 at the stationary point (-2,3) \n" ); document.write( ": \n" ); document.write( "1) 3(-2)^2 + p = 0 \n" ); document.write( "p = -12 \n" ); document.write( ": \n" ); document.write( "we know f(-2) = 3 since (-2,3) is a point on the graph of f(x) \n" ); document.write( ": \n" ); document.write( "2) 3 = (-2)^3 -12(-2) + q \n" ); document.write( "3 = -8 +24 + q \n" ); document.write( "q = -13 \n" ); document.write( ": \n" ); document.write( "f(x) = x^3 -12x -13 \n" ); document.write( ": \n" ); document.write( "************************** \n" ); document.write( "a. p = -12, q = -13 \n" ); document.write( "************************** \n" ); document.write( ": \n" ); document.write( "f'(x) = 3x^2 -12 \n" ); document.write( ": \n" ); document.write( "3x^2 -12 = 0 \n" ); document.write( ": \n" ); document.write( "3x^2 = 12 \n" ); document.write( ": \n" ); document.write( "x^2 = 4 \n" ); document.write( ": \n" ); document.write( "x = 2 and x = -2 \n" ); document.write( ": \n" ); document.write( "*************************** \n" ); document.write( "b. for x = 2 \n" ); document.write( "f(2) = 2^3 -12(2) -13 = -29 \n" ); document.write( "stationary point at (2,-29) \n" ); document.write( "*************************** \n" ); document.write( ": \n" ); document.write( "f'(x) = 3x^2 -12 \n" ); document.write( ": \n" ); document.write( "An inflection point is a point on a curve where the curve changes sign. \n" ); document.write( ": \n" ); document.write( "we take the second derivative, which is \n" ); document.write( ": \n" ); document.write( "f''(x) = 6x \n" ); document.write( ": \n" ); document.write( "our candidate x value is x = 0 \n" ); document.write( ": \n" ); document.write( "Note that if x is negative then 6x is negative and if x is positive then 6x is positive, therefore the point with x = 0 is an inflection point \n" ); document.write( ": \n" ); document.write( "f(0) = 0^3 -12(0) -13 = -13 \n" ); document.write( ": \n" ); document.write( "************************************** \n" ); document.write( "c. the point of inflection is (0,-13) \n" ); document.write( "************************************** \n" ); document.write( ": \n" ); document.write( "the graph of f(x) = x^3 -12x -13 looks like \n" ); document.write( ": \n" ); document.write( " \n" ); document.write( ": \n" ); document.write( "we want values of k, such that f(x) crosses the x axis 3 times \n" ); document.write( ": \n" ); document.write( "*************************************************************** \n" ); document.write( "d. looking at the graph, this is where f(x) = 0, that is, k = 0 \n" ); document.write( "*************************************************************** \n" ); document.write( ": \n" ); document.write( " \n" ); document.write( " |