document.write( "Question 1076492: Please help me show F⊃G follows from [(LvW)*G)]≡F
\n" );
document.write( "using the conditional proof. \n" );
document.write( "
Algebra.Com's Answer #691168 by Edwin McCravy(20055)![]() ![]() You can put this solution on YOUR website! \r\n" ); document.write( "1. [(LvW)*G)] ≡ F /F⊃G\r\n" ); document.write( "\r\n" ); document.write( " |2. F ACP \r\n" ); document.write( " |3. {[(LvW)*G)]⊃F}*{F⊃[(LvW)*G)]} 1, ME \r\n" ); document.write( " |4. {F⊃[(LvW)*G)]}*{[(LvW)*G)]⊃F} 3, commutativity\r\n" ); document.write( " |5. F⊃[(LvW)*G)] 4, simplification\r\n" ); document.write( " |6. (LvW)*G 5,2, MP\r\n" ); document.write( " |7. G*(LvW) 6, commutativity\r\n" ); document.write( " |8. G 7, simplification\r\n" ); document.write( "9. F⊃G lines 2-8 CP\r\n" ); document.write( "\r\n" ); document.write( "Note: \r\n" ); document.write( "ACP stands for \"assumption for conditional proof\".\r\n" ); document.write( "ME stands for \"material equivalence\".\r\n" ); document.write( "MP stands for \"modus ponens\".\r\n" ); document.write( "CP stands for \"conditional proof\".\r\n" ); document.write( "\r\n" ); document.write( "Edwin\n" ); document.write( " |