document.write( "Question 1076492: Please help me show F⊃G follows from [(LvW)*G)]≡F
\n" ); document.write( "using the conditional proof.
\n" ); document.write( "

Algebra.Com's Answer #691168 by Edwin McCravy(20055)\"\" \"About 
You can put this solution on YOUR website!
\r\n" );
document.write( "1. [(LvW)*G)] ≡ F     /F⊃G\r\n" );
document.write( "\r\n" );
document.write( "            |2.   F                                    ACP \r\n" );
document.write( "            |3.   {[(LvW)*G)]⊃F}*{F⊃[(LvW)*G)]}     1, ME \r\n" );
document.write( "            |4.   {F⊃[(LvW)*G)]}*{[(LvW)*G)]⊃F}     3, commutativity\r\n" );
document.write( "            |5.   F⊃[(LvW)*G)]                      4, simplification\r\n" );
document.write( "            |6.   (LvW)*G                            5,2, MP\r\n" );
document.write( "            |7.   G*(LvW)                            6, commutativity\r\n" );
document.write( "            |8.   G                                  7, simplification\r\n" );
document.write( "9. F⊃G    lines 2-8 CP\r\n" );
document.write( "\r\n" );
document.write( "Note: \r\n" );
document.write( "ACP stands for \"assumption for conditional proof\".\r\n" );
document.write( "ME stands for \"material equivalence\".\r\n" );
document.write( "MP stands for \"modus ponens\".\r\n" );
document.write( "CP stands for \"conditional proof\".\r\n" );
document.write( "\r\n" );
document.write( "Edwin
\n" ); document.write( "
\n" );