document.write( "Question 1075418: Find the EXACT value.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "1. sin (-5pi/12)\r
\n" ); document.write( "\n" ); document.write( "2. 2 sin (2 angle)=1\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Thanks for the help!
\n" ); document.write( "

Algebra.Com's Answer #690287 by Boreal(15235)\"\" \"About 
You can put this solution on YOUR website!
Sin -5pi/12=sin of 19 pi/12 as well.
\n" ); document.write( "This is sin (10pi/12+9pi/12)
\n" ); document.write( "=sin(10pi/12)*cos(9pi/12)+cos(10pi/12)*sin(9pi/12)
\n" ); document.write( "both of these are negative
\n" ); document.write( ".5*(-sqrt(2)/2)+(-sqrt(3)/2*sqrt(2)/2)=
\n" ); document.write( "sqrt(2)/4+sqrt(6)/4
\n" ); document.write( "(1/4)(sqrt(2)+sqrt(6))
\n" ); document.write( "-------------------------------
\n" ); document.write( "This is sin (2A)=1/2
\n" ); document.write( "I know that pi/6 radians gives a sin of 1/2
\n" ); document.write( "Therefore, A must be pi/12 radians.
\n" ); document.write( "One can check by sin 2A=2sin A cos A =1/2
\n" ); document.write( "sinA cos A=1/4
\n" ); document.write( "If one uses pi/6 for A or 15 degrees, this will work.
\n" ); document.write( "Answer is pi/6 radians.
\n" ); document.write( "
\n" );