document.write( "Question 1074888: How do I use creamers rule with these 2 systems of equations? I meant for the \"{\" curly brackets to encompass both equations in each problem.\r
\n" ); document.write( "\n" ); document.write( "Solve using Cramer's rule.(Hint: Start by substituting m=1/x and n=1/y.)
\n" ); document.write( "1. {4/x+1/y=1
\n" ); document.write( " {8/x+4/y=3\r
\n" ); document.write( "\n" ); document.write( "2. {4/x-2/y=1
\n" ); document.write( " {10/x+20/y=0
\n" ); document.write( "

Algebra.Com's Answer #689575 by Fombitz(32388)\"\" \"About 
You can put this solution on YOUR website!
Substituting leads to,
\n" ); document.write( "\"4u%2Bv=1\"
\n" ); document.write( "\"8u%2B4v=3\"
\n" ); document.write( "So then the coefficient matrix is,
\n" ); document.write( "\"A=%28matrix%282%2C2%2C%0D%0A4%2C1%2C%0D%0A8%2C4%29%29\"
\n" ); document.write( "\"abs%28A%29=8\"
\n" ); document.write( ".
\n" ); document.write( ".
\n" ); document.write( ".
\n" ); document.write( "\"A%5Bu%5D=%28matrix%282%2C2%2C%0D%0A1%2C1%2C%0D%0A3%2C4%29%29\"
\n" ); document.write( "\"abs%28A%5Bu%5D%29=1\"
\n" ); document.write( ".
\n" ); document.write( ".
\n" ); document.write( ".
\n" ); document.write( "\"A%5Bv%5D=%28matrix%282%2C2%2C%0D%0A4%2C1%2C%0D%0A8%2C3%29%29\"
\n" ); document.write( "\"abs%28A%5Bv%5D%29=4\"
\n" ); document.write( ".
\n" ); document.write( ".
\n" ); document.write( ".
\n" ); document.write( "So then,
\n" ); document.write( "\"u=abs%28A%5Bu%5D%29%2Fabs%28A%29=1%2F8\"
\n" ); document.write( "\"v=abs%28A%5Bv%5D%29%2Fabs%28A%29=4%2F8=1%2F2\"
\n" ); document.write( "So substituting back,
\n" ); document.write( "\"x=1%2Fu=8\"
\n" ); document.write( "\"y=1%2Fv=2\"
\n" ); document.write( ".
\n" ); document.write( ".
\n" ); document.write( ".
\n" ); document.write( "Do the other one exactly the same way.
\n" ); document.write( "I just realized I used u and v instead of m and n.
\n" ); document.write( "
\n" );