\r\n" );
document.write( "Where this has one root\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "amounts to the system of equations with y = left side\r\n" );
document.write( "and y = right side, or\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "having ony one point of intersection.\r\n" );
document.write( "\r\n" );
document.write( "We draw the graph of
and various\r\n" );
document.write( "horizontal lines that have the equations
for\r\n" );
document.write( "various values of k:\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "We see that the horizontal lines above the \r\n" );
document.write( "relative maximum point intersect the graph in only\r\n" );
document.write( "one point, as do points below the relative minimum\r\n" );
document.write( "point. However the horizontal lines between the relative\r\n" );
document.write( "maximum and relative minimum points intersect the graph\r\n" );
document.write( "3 times, and the horizontal line that pass through those\r\n" );
document.write( "relative extrema intersect the graph twice.\r\n" );
document.write( "\r\n" );
document.write( "Therefore so that a horizontal y = k crosses the graph\r\n" );
document.write( "only once, we find the relative extrema:\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "We find the derivative using the product rule:\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( " \r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "Set that = 0\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "Factor out (x-1)\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "
,
\r\n" );
document.write( "
,
\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "So the x-coordinates of the relative extrema are\r\n" );
document.write( "x = 1 and x=-1\r\n" );
document.write( "\r\n" );
document.write( "We substitute those into the equation of the graph\r\n" );
document.write( "to find the y-values of the two relative extrema:\r\n" );
document.write( "\r\n" );
document.write( "
, substituting x=-1\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "
\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "So the relative maximum point is (-1,4)\r\n" );
document.write( "\r\n" );
document.write( "
, substituting x=1\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "
\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "So the relative minimum point is (1,0)\r\n" );
document.write( "\r\n" );
document.write( "So we must have k > 4 or k < 0 in order\r\n" );
document.write( "for
to have exactly one root.\r\n" );
document.write( "\r\n" );
document.write( "Edwin
\r
\n" );
document.write( "\n" );
document.write( "
\n" );
document.write( " \n" );
document.write( "