document.write( "Question 1073354: 100m of wire is available for fencing a rectangular piece of land. find the dimension of land which maximize the area. hence, determine the maximum area of the fence. \n" ); document.write( "
Algebra.Com's Answer #688183 by math_helper(2461)![]() ![]() You can put this solution on YOUR website! 100m of wire is available for fencing a rectangular piece of land. find the \n" ); document.write( "————————————————————————————————————\r \n" ); document.write( "\n" ); document.write( "If the fence shape must be rectangular, then a square maximizes the enclosed area.\r \n" ); document.write( "\n" ); document.write( "—— Proof that a square maximizes area ——\r \n" ); document.write( "\n" ); document.write( " Perimeter = P = 2L + 2W \n" ); document.write( " Area = A = L*W \r \n" ); document.write( "\n" ); document.write( "A = ((P-2W)/2)*W = (PW)/2 - W^2\r \n" ); document.write( "\n" ); document.write( "dA/dW = P/2 - 2W \n" ); document.write( "Set dA/dW = 0: P/2 - 2W = 0 —> W = P/4 —> L=P/4 so a square shape. \n" ); document.write( "—— End proof —————\r \n" ); document.write( "\n" ); document.write( "A square with sides \n" ); document.write( "\n" ); document.write( " \n" ); document.write( "————————————————— For fun/Info —————————————\r \n" ); document.write( "\n" ); document.write( "To enclose the maximum area with no shape restrictions, a CIRCLE will do: \n" ); document.write( "Circumference= \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "— \n" ); document.write( "Making a circle with radius 15.915m would give you an enclosed area of \n" ); document.write( " \n" ); document.write( " |