document.write( "Question 1073354: 100m of wire is available for fencing a rectangular piece of land. find the dimension of land which maximize the area. hence, determine the maximum area of the fence. \n" ); document.write( "
Algebra.Com's Answer #688183 by math_helper(2461)\"\" \"About 
You can put this solution on YOUR website!
100m of wire is available for fencing a rectangular piece of land. find the
\n" ); document.write( "————————————————————————————————————\r
\n" ); document.write( "\n" ); document.write( "If the fence shape must be rectangular, then a square maximizes the enclosed area.\r
\n" ); document.write( "\n" ); document.write( "—— Proof that a square maximizes area ——\r
\n" ); document.write( "\n" ); document.write( " Perimeter = P = 2L + 2W
\n" ); document.write( " Area = A = L*W \r
\n" ); document.write( "\n" ); document.write( "A = ((P-2W)/2)*W = (PW)/2 - W^2\r
\n" ); document.write( "\n" ); document.write( "dA/dW = P/2 - 2W
\n" ); document.write( "Set dA/dW = 0: P/2 - 2W = 0 —> W = P/4 —> L=P/4 so a square shape.
\n" ); document.write( "—— End proof —————\r
\n" ); document.write( "\n" ); document.write( "A square with sides \"+highlight%2825m%29\" will maximize the area, and that area will be \"+25%5E2+=+625m%5E2\"\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "————————————————— For fun/Info —————————————\r
\n" ); document.write( "\n" ); document.write( "To enclose the maximum area with no shape restrictions, a CIRCLE will do:
\n" ); document.write( "Circumference= \"+C+=+2%28pi%29r+\"\r
\n" ); document.write( "\n" ); document.write( "\"+100+=+2%28pi%29r+\"
\n" ); document.write( "\"+100%2F%282%28pi%29%29+=+r+\"
\n" ); document.write( "\"+15.915m+=+r+\"\r
\n" ); document.write( "\n" ); document.write( "—
\n" ); document.write( "Making a circle with radius 15.915m would give you an enclosed area of \"%28pi%29r%5E2+=+795.725m%5E2+\"
\n" ); document.write( "
\n" ); document.write( "
\n" );