document.write( "Question 1069405: How do I find the vertex and focus and directrix of y=1/2x^2 \n" ); document.write( "
Algebra.Com's Answer #684608 by josgarithmetic(39620)\"\" \"About 
You can put this solution on YOUR website!
\"y=%281%2F2%29x%5E2\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2y=x%5E2\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"highlight%282%28y-0%29=%28x-0%29%5E2%29\"
\n" ); document.write( "Vertex is (0,0).\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The parabola has a focus above the vertex and directrix below the vertex.
\n" ); document.write( "Compare to \"4py=x%5E2\" for p the distance from vertex to focus.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"4p=2\"
\n" ); document.write( "\"p=2%2F4\"
\n" ); document.write( "\"highlight_green%28p=1%2F2%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The focus is \"1%2F2\" unit from the vertex (0,0).
\n" ); document.write( "FOCUS: (0, 1/2).
\n" ); document.write( "DIRECTRIX: \"y=-1%2F2\".
\n" ); document.write( "
\n" );