Algebra.Com's Answer #683916 by ikleyn(52788)  You can put this solution on YOUR website! . \n" );
document.write( "cos^3(A)×cos(3A)+sin^3(A)×sin(3A)=cos^3 (2A) \n" );
document.write( "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\r \n" );
document.write( " \n" );
document.write( "\n" );
document.write( "Unfortunately, the person who submitted this post didn't say what he/she wanted.\r \n" );
document.write( "\n" );
document.write( "So, I will formulate it instead of him/her: \"Prove an identity . . . \"\r \n" );
document.write( " \n" );
document.write( "\n" );
document.write( "\r\n" );
document.write( "The keys are these two formulas:\r\n" );
document.write( "\r\n" );
document.write( " = , (1) and\r\n" );
document.write( "\r\n" );
document.write( " = . (2)\r\n" );
document.write( "\r\n" );
document.write( "(see the lesson Powers of trigonometric functions in this site). When applying them, you will get\r\n" );
document.write( "\r\n" );
document.write( "cos^3(A)*cos(3A) = , (3) and\r\n" );
document.write( "\r\n" );
document.write( "sin^3(A)*sin(3A) = . (4)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "So, adding and expanding (3) and (4), you will get\r\n" );
document.write( "\r\n" );
document.write( " = \r\n" );
document.write( "\r\n" );
document.write( "= = \r\n" );
document.write( "\r\n" );
document.write( "= [ ] + [ ] = \r\n" );
document.write( "\r\n" );
document.write( " For the first bracket [ . . ] apply the formula cos(2x) = . . . \r\n" );
document.write( " For the second bracket [ . . ] apply the formula cos(x-y) = . . . You will get\r\n" );
document.write( "\r\n" );
document.write( "= = = \r\n" );
document.write( "\r\n" );
document.write( " Now apply again the formula (1). You will get\r\n" );
document.write( "\r\n" );
document.write( "= .\r\n" );
document.write( " \r \n" );
document.write( "\n" );
document.write( "QED. Proved and solved.\r \n" );
document.write( " \n" );
document.write( "\n" );
document.write( " \n" );
document.write( " |