document.write( "Question 1068273: Find an equation(s) of the circle(s) of radius 4 with center on the line 4x + 3y + 7 = 0 and tangent to 3x + 4y + 34 = 0
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #683503 by Alan3354(69443)![]() ![]() You can put this solution on YOUR website! Find an equation(s) of the circle(s) of radius 4 with center on the line 4x + 3y + 7 = 0 and tangent to 3x + 4y + 34 = 0 \n" ); document.write( "--------------- \n" ); document.write( "There are 2 circles. \n" ); document.write( "Find the equations of the 2 lines parallel to 3x + 4y + 34 = 0 and 4 units from it. \n" ); document.write( "3x + 4y + 34 = 0 \n" ); document.write( "y = (-3/4)x - 17/2 \n" ); document.write( "Slope m of 3x + 4y + 34 = 0 is -3/4. \n" ); document.write( "Difference in y-ints = 4/(cos(atan(-3/4)) = 5 \n" ); document.write( "------------- \n" ); document.write( "--> the 2 parallel lines are: \n" ); document.write( "y = (-3/4)x - 17/2 + 5 = (-3/4)x - 7/2 \n" ); document.write( "and y = (-3/4)x - 17/2 - 5 = (-3/4)x - 27/2 \n" ); document.write( "---------- \n" ); document.write( "The intersection of those 2 lines and 4x + 3y + 7 = 0 are the 2 centers of the circles, (h,k). \n" ); document.write( "--- \n" ); document.write( "4x + 3y + 7 = 0 \n" ); document.write( "y = (-3/4)x - 7/2 \n" ); document.write( "4x -9x/4 - 21/2 = -7 \n" ); document.write( "7x/4 = 7/2 \n" ); document.write( "x = 2, y = -5 \n" ); document.write( "--> \n" ); document.write( "=============================== \n" ); document.write( "Find the other circle the same way. \n" ); document.write( "=============== \n" ); document.write( "email via the TY note for help or to check your work.\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |