Algebra.Com's Answer #683110 by ikleyn(52781)  You can put this solution on YOUR website! . \n" );
document.write( "Find the equation of a circle that has radius length {sqrt(30)} and is tangent to the line 3x+y-5=0 at the point (-1,8). \n" );
document.write( "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\r \n" );
document.write( " \n" );
document.write( "\n" );
document.write( "I think that more short (and more straightforward) solution is possible.\r \n" );
document.write( " \n" );
document.write( "\n" );
document.write( "\r\n" );
document.write( "The idea is to draw (to write the equation of) the straight line perpendicular to the given line through the given point (-1,8), \r\n" );
document.write( "and then to take its intersection with the circle of the radius centered at the given point (-1,8).\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Plot y = 5-3x (the given line, red), y = (the perpendicular at (-1,8), green)\r\n" );
document.write( "and the circle centers (intersection points of the green straight line with the arcs, blue and purple arcs)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "1. The straight line perpendicular to the given line 3x+y-5=0 at the point (-1,8) is\r\n" );
document.write( "\r\n" );
document.write( " -(x-(-1)) + 3(y-8) = 0, or (which is the same) -x - 1 + 3y - 24 = 0 or (which is equivalent) x = 3y-25.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "2. The circle of the radius centered at (-1,8) is\r\n" );
document.write( "\r\n" );
document.write( " = .\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "3. The centers of two circles we are searching for, are the intersection points, i.e. the solutions of the system\r\n" );
document.write( "\r\n" );
document.write( " x = 3y-25, (1)\r\n" );
document.write( " = . (2)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( " To solve the system, substitute (1) into (2), replacing x. You will get\r\n" );
document.write( "\r\n" );
document.write( " = 30,\r\n" );
document.write( "\r\n" );
document.write( " 9y^2 - 144y + 576 + y^2 - 16y + 64 = 30,\r\n" );
document.write( "\r\n" );
document.write( " 10y^2 - 160y + 610 = 0,\r\n" );
document.write( "\r\n" );
document.write( " = = = .\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( " Thus the centers are\r\n" );
document.write( "\r\n" );
document.write( " a) = , = 3y-25 = , and\r\n" );
document.write( "\r\n" );
document.write( " b) = , = 3y-25 = .\r\n" );
document.write( " \r \n" );
document.write( "\n" );
document.write( "Having the centers and the radius r = , everybody can write the standard equations for the two circles.\r \n" );
document.write( " \n" );
document.write( " \n" );
document.write( "\n" );
document.write( " \n" );
document.write( " |