document.write( "Question 1067725: Determine equations for two lines that pass through (1, -5) and are tangent to the graph y= x^2 -2. \n" ); document.write( "
Algebra.Com's Answer #682834 by josgarithmetic(39617)![]() ![]() ![]() You can put this solution on YOUR website! \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Expression for the parabola, MINUS the expression for the tangent line, should be 0, where the line and parabola intersect. This line is not above the parabola.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "If x=-1, then y=(-1)^2-2=-1. \n" ); document.write( "Point on parabola, (-1,-1).\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "If x=3, then y=(3)^2-2=9-2=7. \n" ); document.write( "Point on parabola, (3,7).\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The Two Possible Lines Tangent to y=x^2-2, and containing (1,-5): \n" ); document.write( "- \n" ); document.write( "Line containing (1,-5) and (-1,-1). \n" ); document.write( "slope \n" ); document.write( "Equation starting point-slope form, \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "- \n" ); document.write( "Line containing (1,-5) and (3,7). \n" ); document.write( "slope \n" ); document.write( "Equation, \n" ); document.write( " |