document.write( "Question 1066797: Find the ratio in which the Y-axis divides the line segment joining the points (5,-6) and (-1,-4). Also find the point of intersection. \n" ); document.write( "
Algebra.Com's Answer #682004 by rothauserc(4718)\"\" \"About 
You can put this solution on YOUR website!
slope of line = (-4 - (-6)) / (-1 - 5) = 2 / -6 = -1/3
\n" ); document.write( ":
\n" ); document.write( "y = (-x/3) + b
\n" ); document.write( ":
\n" ); document.write( "use one of the points (5, -6)
\n" ); document.write( ":
\n" ); document.write( "-6 = (-5/3) + b
\n" ); document.write( ":
\n" ); document.write( "b = -13/3
\n" ); document.write( ":
\n" ); document.write( "y = (-x/3) - (13/3)
\n" ); document.write( ":
\n" ); document.write( "this line intersects the y axis at (0, -13/3)
\n" ); document.write( ":
\n" ); document.write( "distance(d) from point (5,-6) to point of intersection is square root(5^2 + (-5/3)^2) = (5 * square root(10)) / 3
\n" ); document.write( ":
\n" ); document.write( "d from point (-1, -4) to point of intersection is square root(1^2 + (1/3)^2) = square root(10) / 3
\n" ); document.write( ":
\n" ); document.write( "ratio is (square root(10) / 3) / ((5 * square root(10)) / 3) = (1 / 5)
\n" ); document.write( ":
\n" ); document.write( "
\n" ); document.write( "
\n" );