document.write( "Question 1066653: The units’ digit of a two-digit number is 7 more than the tens’ digit. If 26 is added to the number, the result obtained is five times the sum of the digits. Find the number.
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #681859 by math_helper(2461)![]() ![]() You can put this solution on YOUR website! Let a = unit's digit \n" ); document.write( "Let b = ten's digit \n" ); document.write( "—\r \n" ); document.write( "\n" ); document.write( "In this way, 10b+a = the unknown number \n" ); document.write( "—\r \n" ); document.write( "\n" ); document.write( " a = b+7 (1) \n" ); document.write( " (10b+a) + 26 = 5(a+b) (2)\r \n" ); document.write( "\n" ); document.write( "Subs \"b+7\" for \"a\" from (1), into (2): \n" ); document.write( "(10b + (b+7)) + 26 = 5((b+7) + b)\r \n" ); document.write( "\n" ); document.write( "(10b + b + 7 + 26) = 5(2b+7) \n" ); document.write( "11b + 33 = 10b + 35 \n" ); document.write( " 11b + 33 - 10b - 33 = 10b + 35 - 10b - 33 (subtract 33 & 10b from both sides) \n" ); document.write( " b = 2\r \n" ); document.write( "\n" ); document.write( "b=2 —(from (1))—> a = 2+7 = 9 \n" ); document.write( "—\r \n" ); document.write( "\n" ); document.write( "Ans: the number is 29 \n" ); document.write( "—\r \n" ); document.write( "\n" ); document.write( "Check: 2+9 = 11, and 11*5 = 55 \n" ); document.write( " and 29 + 26 = 55 (ok)\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |