document.write( "Question 1066528: Heights of men on a baseball team have a​ bell-shaped distribution with a mean of 169 cm and a standard deviation of 6 cm. Using the empirical​ rule, what is the approximate percentage of the men between the following​ values;
\n" ); document.write( "a. 151 cm and 187 cm
\n" ); document.write( "b. 157 cm and 181 cm\r
\n" ); document.write( "\n" ); document.write( "can you please show steps so I can understand how to solve this?
\n" ); document.write( "

Algebra.Com's Answer #681800 by Boreal(15235)\"\" \"About 
You can put this solution on YOUR website!
z=(x-mean)/sd
\n" ); document.write( "mean is 169 and sd is 6
\n" ); document.write( "x is the value given
\n" ); document.write( "z=(151-169)/6 and that is -18/6 or -3
\n" ); document.write( "z=(187-169)/6=18/6=3
\n" ); document.write( "so you want z to be between -3 and 3. That is by the empirical rule 99.7%
\n" ); document.write( "-------------------------------
\n" ); document.write( "For 157 and 181
\n" ); document.write( "z=(157-169)/6=-2, because -12/6=-2
\n" ); document.write( "z=(181-169)/6=2
\n" ); document.write( "That is z between -2 and 2, which by the empirical rule is 95%
\n" ); document.write( "
\n" );