document.write( "Question 1066287: Find 3 number in the geometrical progression whose sum is 28 and whose product is 512 \n" ); document.write( "
Algebra.Com's Answer #681454 by swincher4391(1107)![]() ![]() You can put this solution on YOUR website! Let a be the first number, b be the 2nd, c be the 3rd.\r \n" ); document.write( "\n" ); document.write( "So a + b + c = 28 and a*b*c = 512.\r \n" ); document.write( "\n" ); document.write( "Normally this would not be enough, but we know that there is a progression.\r \n" ); document.write( "\n" ); document.write( "Let r be the common ratio between numbers in a geometric progression.\r \n" ); document.write( "\n" ); document.write( "So the 2nd number can be written as: \n" ); document.write( "b = r*a\r \n" ); document.write( "\n" ); document.write( "And the 3rd number can be written as:\r \n" ); document.write( "\n" ); document.write( "c = r^2*a\r \n" ); document.write( "\n" ); document.write( "Go back to our original problem.\r \n" ); document.write( "\n" ); document.write( "a + b + c can be written as a + ra + r^2*a\r \n" ); document.write( "\n" ); document.write( "a*b*c can be written as a * (ra) * (r^2*a) = r^3*a^3\r \n" ); document.write( "\n" ); document.write( "so we have that two equations.\r \n" ); document.write( "\n" ); document.write( "a+ra+r^2*a = 28 \n" ); document.write( "r^3*a^3 = 512\r \n" ); document.write( "\n" ); document.write( "We can solve for ra by taking the cube root of both sides in the 2nd equation.\r \n" ); document.write( "\n" ); document.write( "(r*a)^3 = 512\r \n" ); document.write( "\n" ); document.write( "(r*a) = 8\r \n" ); document.write( "\n" ); document.write( "So a = 8/r\r \n" ); document.write( "\n" ); document.write( "8/r + 8 + 8r = 28\r \n" ); document.write( "\n" ); document.write( "8/r + 8r = 20\r \n" ); document.write( "\n" ); document.write( "8(1/r + r) = 20\r \n" ); document.write( "\n" ); document.write( "(r^2+1 / r) = 5/2\r \n" ); document.write( "\n" ); document.write( "2(r^2+ 1) = 5r\r \n" ); document.write( "\n" ); document.write( "2r^2 + 2 = 5r\r \n" ); document.write( "\n" ); document.write( "2r^2 - 5r +2 = 0\r \n" ); document.write( "\n" ); document.write( "we can rewrite as (2r-1)(r-2) so r = 1/2 or r = 2.\r \n" ); document.write( "\n" ); document.write( "Let's try r = 2 first.\r \n" ); document.write( "\n" ); document.write( "So if r =2 then a = 4\r \n" ); document.write( "\n" ); document.write( "So we have \r \n" ); document.write( "\n" ); document.write( "4, 8, 16 which do satisfy the conditions. But are there other numbers?\r \n" ); document.write( "\n" ); document.write( "Try r = 1/2. Then a = 16.\r \n" ); document.write( "\n" ); document.write( "So we have 16, 8 , 4. Ah, so it appears it is the same either way.\r \n" ); document.write( "\n" ); document.write( "The numbers are 4, 8 , 16.\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |