document.write( "Question 1064768: What is the units digit of 3^1001 × 7^1002 × 13^1003 ? \n" ); document.write( "
Algebra.Com's Answer #679849 by ikleyn(52812)\"\" \"About 
You can put this solution on YOUR website!
.
\n" ); document.write( " What is the units digit of 3^1001 × 7^1002 × 13^1003 ?
\n" ); document.write( "~~~~~~~~~~~~~~~~~~~\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r\n" );
document.write( "3^1001 × 7^1002 × 13^1003 = (3*7*13)^1001 * 7*(13^2) = 273^1001 * 1183\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Regarding 273^n, the last digit is periodical with the period of 4, so 273^1001 has the last digit 3.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Therefore, the given number has the same last digit as 3*1183, i.e. 9.\r\n" );
document.write( "
\r
\n" ); document.write( "\n" ); document.write( "Solved.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The answer is 9.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );