document.write( "Question 1063362: area of an inscribed semi circle in an equilateral triangle\r
\n" );
document.write( "\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #678470 by ikleyn(52787)![]() ![]() You can put this solution on YOUR website! . \n" ); document.write( "area of an inscribed semi circle in an equilateral triangle \n" ); document.write( "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( "1. Make a sketch. Draw an equilateral triangle; an inscribed semi-circle; and the radius from the center of the semi-circle \r\n" ); document.write( " to the tangent point on the triangle side.\r\n" ); document.write( "\r\n" ); document.write( " Notice that this radius is the height in the right-angled triangle which has the triangle side as the hypotenuse.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "2. Let \"a\" be the side length of the equilateral triangle.\r\n" ); document.write( "\r\n" ); document.write( " Then its area is\r \n" ); document.write( "\n" ); document.write( "Solved.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |