document.write( "Question 1063357: in triangle JKL, J is a right angle. point M is on Lk such that JM is perpendicular to LK. If LM = 6 and LK = 15, find JL. (simplify radicals.) \n" ); document.write( "
Algebra.Com's Answer #678444 by rothauserc(4718)![]() ![]() You can put this solution on YOUR website! 1) JL^2 + JK^2 = 225 \n" ); document.write( ": \n" ); document.write( "2) JM^2 + 36 = JL^2 \n" ); document.write( ": \n" ); document.write( "3) JM^2 + 81 = JK^2 \n" ); document.write( ": \n" ); document.write( "By equation 1) JK^2 = 225 - JL^2 \n" ); document.write( ": \n" ); document.write( "substitute for JK^2 in equation 3) \n" ); document.write( ": \n" ); document.write( "4) JM^2 + 81 = 225 - JL^2 \n" ); document.write( ": \n" ); document.write( "By equation 2 JM^2 = JL^2 - 36 \n" ); document.write( ": \n" ); document.write( "substitute for JM^2 in equation 4) \n" ); document.write( ": \n" ); document.write( "JL^2 - 36 + 81 = 225 - JL^2 \n" ); document.write( ": \n" ); document.write( "2JL^2 = 180 \n" ); document.write( ": \n" ); document.write( "JL^2 = 90 \n" ); document.write( ": \n" ); document.write( "***************************** \n" ); document.write( "JL = sqrt(90) = 3 * sqrt(10) \n" ); document.write( "***************************** \n" ); document.write( ": \n" ); document.write( " \n" ); document.write( " |