document.write( "Question 1063357: in triangle JKL, J is a right angle. point M is on Lk such that JM is perpendicular to LK. If LM = 6 and LK = 15, find JL. (simplify radicals.) \n" ); document.write( "
Algebra.Com's Answer #678444 by rothauserc(4718)\"\" \"About 
You can put this solution on YOUR website!
1) JL^2 + JK^2 = 225
\n" ); document.write( ":
\n" ); document.write( "2) JM^2 + 36 = JL^2
\n" ); document.write( ":
\n" ); document.write( "3) JM^2 + 81 = JK^2
\n" ); document.write( ":
\n" ); document.write( "By equation 1) JK^2 = 225 - JL^2
\n" ); document.write( ":
\n" ); document.write( "substitute for JK^2 in equation 3)
\n" ); document.write( ":
\n" ); document.write( "4) JM^2 + 81 = 225 - JL^2
\n" ); document.write( ":
\n" ); document.write( "By equation 2 JM^2 = JL^2 - 36
\n" ); document.write( ":
\n" ); document.write( "substitute for JM^2 in equation 4)
\n" ); document.write( ":
\n" ); document.write( "JL^2 - 36 + 81 = 225 - JL^2
\n" ); document.write( ":
\n" ); document.write( "2JL^2 = 180
\n" ); document.write( ":
\n" ); document.write( "JL^2 = 90
\n" ); document.write( ":
\n" ); document.write( "*****************************
\n" ); document.write( "JL = sqrt(90) = 3 * sqrt(10)
\n" ); document.write( "*****************************
\n" ); document.write( ":
\n" ); document.write( "
\n" ); document.write( "
\n" );