document.write( "Question 1062663: This problem is giving me a hard time, please help!\r
\n" );
document.write( "\n" );
document.write( "The one-to-one functions g and h are defined as follows.\r
\n" );
document.write( "\n" );
document.write( "=g{(−7, 1), (1, -7), (5, 6), (7, 9)}
\n" );
document.write( " \r
\n" );
document.write( "\n" );
document.write( "=h(x)=3x-14\r
\n" );
document.write( "\n" );
document.write( "Find:\r
\n" );
document.write( "\n" );
document.write( "g^-1(1)=
\n" );
document.write( "h^-1(x)=
\n" );
document.write( "(h^-1 º h)(7)=
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #677627 by Fombitz(32388)![]() ![]() You can put this solution on YOUR website! The inverse of g uses the range of g as the domain so, using g, find the x value corresponding to the y value of 1, y=-7, so, \n" ); document.write( " \n" ); document.write( ". \n" ); document.write( ". \n" ); document.write( ". \n" ); document.write( "To find the inverse of h, use x,y nomenclature, \n" ); document.write( " \n" ); document.write( "Interchange x and y and solve for y. \n" ); document.write( "This new y is the inverse. \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( ". \n" ); document.write( ". \n" ); document.write( ". \n" ); document.write( "The composition of a function and its inverse yields the original input. \n" ); document.write( " \n" ); document.write( "So then, \n" ); document.write( " \n" ); document.write( "or \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |