document.write( "Question 1062437: An angle measures 5π/4 radiant.
\n" ); document.write( "A. How would the sketch of this graph look in standard position.\r
\n" ); document.write( "\n" ); document.write( "B. What are \"+2+\" co-terminal angles (\"+1+\"positive and \"+1+\"negative). \r
\n" ); document.write( "\n" ); document.write( "C. Can you convert the measure in angles to degrees?
\n" ); document.write( "Thanks!
\n" ); document.write( "

Algebra.Com's Answer #677374 by josmiceli(19441)\"\" \"About 
You can put this solution on YOUR website!
\"+5%2Api%2F4+=+4%2Api%2F4+%2B+pi%2F4+\"
\n" ); document.write( "\"+5%2Api%2F4+=+pi+%2B+pi%2F4+\"
\n" ); document.write( "This is a CCW turn of the radial vector \"+pi%2F4+\"
\n" ); document.write( "radians past the \"+pi+\" radian vector,
\n" ); document.write( "putting the angle in the 3rd quadrant
\n" ); document.write( "---------------------------------------------
\n" ); document.write( "The negative co-terminal angle is
\n" ); document.write( "a CW turn of the radial vector by
\n" ); document.write( "\"+-pi%2F2+-+pi%2F4+=+-3%2Api%2F4+\", the same position in the 3rd quadrant
\n" ); document.write( "----------------------------------------------
\n" ); document.write( "\"+pi%2F4+\" radians = \"+45+\" degrees
\n" ); document.write( "\"+5%2Api%2F4+\" radians = \"+5%2A45+\" degrees
\n" ); document.write( "\"+5%2A45+=+225+\" degrees
\n" ); document.write( "( also \"+-3%2Api%2F4+\" radians = \"+-135+\" degrees
\n" ); document.write( "is the negative co-terminal angle )
\n" ); document.write( "
\n" ); document.write( "
\n" );